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Question

How do effects on sentence processing difficulty unfold
over time during naturalistic reading?

Hypothesis

Human responses to linguistic variables during reading are
temporally diffuse and can be better explained by directly
modeling temporal diffusion.

Problem

• Linear Mixed Effects models (LME) [3, 4, 5, 11, 9] and
Generalized Additive Models (GAM) [12, 10] make
implausible temporal independence assumptions.

• Spillover has several undesirable properties:
• Spillover positions must be assumed in advance
• Actual time is ignored
• Can lead to parametric explosion

• Newer work on dealing with autocorrelation and
non-stationarity in psycholinguistic time series [1, 2] still
does not address temporal diffusion

Our approach

Use deconvolutional time series regression (DTSR) to find
best-fit impulse response functions (IRF) from independent to
dependent variables.
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Synthetic responses produced by a randomly sampled stationary
impulse response function. Note the undulating GAM smooth in
blue, suggesting non-stationarity that is not in fact present in the
underlying generative process.

Mathematical description

Name Explanation
X Fixed effects design matrix
Z Random effects design matrix
y Dependent variable observation vector
µ̂ Intercept
I Random intercept indicator matrix
ẑ Random intercepts vector
b̂ Fixed effects vector
û Random effects vector
o Number of fixed effect parameters
p Number of random effect parameters
q Number of parameters of g
Âfixed q×o dimensional matrix of fixed convolution param-

eters
Âran q × p dimensional matrix of random convolution pa-

rameters
c Function from index in y to last preceding index in

X,Z
ty, tX,
tZ

Timestamp functions mapping observation indices in
y, X and Z respectively to their timestamps.

ŷ def
= µ̂ + I ẑ + X̂conv b̂ + Ẑconv û (1)

X̂conv[i, j]
def
=

c(i)∑
k=1

X[k, j] · g( ty(i) − tX(k); Âfixed[∗, j] ) (2)

Ẑconv[i, j]
def
=

c(i)∑
k=1

Z[k, j] · g( ty(i) − tZ(k); Âran[∗, j] ) (3)

Use SGD to minimize MSE loss, assuming Gaussian kernel g:

µ̂, ẑ, b̂, û, Âfixed, Âran = argmin
µ̂,ẑ,b̂,û,Âfixed,Âran

1
n

n∑
i=1

(y[i] − ŷ[i])2 (4)

Data

We modeled reading times in the Natural Stories [7], Dundee
[8], and UCL [6] corpora. These three corpora provide a useful
2-way manipulation of series length and modality:

Long series Short series

Natural Stories Dundee UCL

Eye-trackingSelf-paced reading

Results

Random effects structure

∅ Isubj Ssubj

System Train Test Train Test Train Test

LMEnoS 27761 27899 20546 20850 20187† 20620†

LMEoptS 27708 27849 20496 20797 20132† 20566†

LMEfullS 27674 27819 20461 20763 19979† 20505†

GAMnoS 27728 27838 20484 20816 — —

GAMoptS 27692 27795 20446 20774 — —

GAMfullS 27636 27767 20395 20733 — —

DTSR 20748 21046 19300 19608 18493 18820

(a) Natural Stories

Random effects structure

∅ Isubj Ssubj

System Train Test Train Test Train Test

LMEnoS 49068 48003 47871 46793 47565 46515

LMEoptS 48392 47654 47293 46533 46465† 45825†

LMEfullS 48000 47190 46852 46006 45909† 45422†

GAMnoS 48649 47590 47576 46531 — —

GAMoptS 48822 47907 47691 46844 — —

GAMfullS 48452 47611 47314 46521 — —

DTSR 46437 44307 46195 44008 45451 43114
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(b) Dundee

Random effects structure

∅ Isubj Ssubj

System Train Test Train Test Train Test

LMEnoS 70738 64539 67583 61882 66034† 60930†

LMEoptS 70425 64314 67362 61765 65779 60912
LMEfullS 70084 63902 67151 61454 64498† 60982†

GAMnoS 68764 63195 66100 60982 — —

GAMoptS 69259 63657 66242 61106 — —

GAMfullS 68505 62955 65993 60782 — —

DTSR 70139 64117 68852 62925 65994 61311
Time (s)

(c) UCL
Mean squared prediction error from DTSR vs. LME/GAM baseline models on the Natural Stories, Dundee, and UCL corpora. Train and test losses are
presented for various random effects structures, since differences can be diagnostic of overfitting. For history modeling, each baseline system was tried
with no spillover (noS), optimized spillover (optS) and full spillover 0-3 (fullS) of all predictors. Each system was evaluated with no random effects (∅),
by-subject random intercepts (Isubj), and by-subject random intercepts and slopes (Ssubj). Daggers indicate convergence failure. Missing GAM cells are
because prediction from mixed models is not implemented in mgcv. Plots show learned IRF from the Ssubj DTSR model for each dataset. Each curve
shows the estimated influence on reading latency over time of a single observation of 1 SD of the independent variable (e.g. for Dundee, 1 SD of 5-gram
surprisal will incur about 35ms of slowdown at the current word and about 10ms of slowdown at a word observed 200ms later).

Discussion

• DTSR can provide a better predictive model of reading across modalities (Natural Stories and Dundee), but short series
make IRF estimation less reliable (UCL).

• Learned IRF heavily emphasize low-level variables like rate (convolution of 1’s at every stimulus) and saccade length.
Linguistic variables appear to be of negligible value in SPR, suggesting a large influence of inertia.

• Temporal diffusion is mostly restricted to the first second after stimulus onset across datasets.
• Overall improvement of DTSR predictions over competitors (pooled across corpora) is highly significant by 2-tailed

permutation test (p = 0.0001).
• Results support temporal diffusion as an important potential confound in psycholinguistic data and suggest DTSR as a tool

to address it.


