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Abstract

The predictions of theories of incremental human sentence processing are often cached

out in word-by-word measures, but the mind is a dynamical system that responds to lan-

guage in real time. As a result, there may be a complex alignment between the properties of

words in language and the influence those properties exert on measures of human cognition.

One possible aspect of this alignment is temporal diffusion, whereby sentence processing

effects are realized in a delayed manner (Mitchell, 1984). For example, because of real-time

bottlenecks in human information processing (Mollica and Piantadosi, 2017), encountering

a surprising word may increase cognitive load not only at that word, but also on subsequent

words as the rest of the experiment unfolds (Smith and Levy, 2013).

In this thesis, I argue that effect timecourses are of direct or indirect importance to many

central questions in psycholinguistics, that failure to account for these timecourses can have

large impacts on the results of scientific hypothesis tests, and that existing discrete-time

approaches to estimating and controlling for effect timecourses are not well adapted to

many experimental designs in psycholinguistics, which involve non-uniform time series in

which events (words) have variable duration. I define and implement an analysis technique

that addresses these concerns: continuous-time deconvolutional regression (CDR). CDR

estimates continuous-time functions that describe the shape and extent of a predictor’s

influence on the response over time, thus directly illuminating and controlling for temporally

diffuse effects. I show empirically that CDR accurately recovers ground-truth models from

synthetic data and provides plausible and detailed estimates of temporal structure in human

data that generalize better than estimates obtained using existing techniques.

I apply CDR to measures of naturalistic sentence processing in order test several theo-

retical questions in psycholinguistics. In one study, I present a CDR analysis that challenges
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an existing hypothesis that human reading times exhibit distinct effects of a word’s over-

all frequency vs. its predictability from context (Staub, 2015), instead finding no evidence

for such a distinction in naturalistic reading. In another study, I present a CDR analysis

showing evidence from naturalistic functional magnetic resonance imaging (fMRI) data that

human predictive mechanisms for language processing are sensitive to the syntactic features

of sentences, and that these predictive mechanisms reside primarily in regions of the brain

that are selective for language processing, rather than in regions involved in domain-general

executive control. In a final study, I reanalyze the fMRI data with respect to theory-driven

measures of working memory retrieval difficulty and report significant retrieval effects over

strong controls for word predictability, but only in language-selective regions. This result

supports a core role for language-specific working memory resources in typical language

comprehension.

Finally, I define and implement a deep neural generalization of CDR — the continuous-

time deconvolutional regressive neural network (CDRNN) — that relaxes many of CDR’s

simplifying assumptions while retaining its deconvolutional interpretation. I show empiri-

cally that CDRNN generalizes better than CDR and other baselines on human data, and

that it supports novel insights into the functional form of effects and effect interactions over

time that are difficult to obtain using other methods. Based on these results, I advocate

both increased attention to the temporal dimension in psycholinguistic regression analyses

and the use of CDR to understand the dynamics of human sentence processing.
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Language Processing and Time
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Chapter 1

Introduction

Central questions in psycholinguistics concern the mental processes involved in incremen-

tal human language understanding: which representations are computed when, by what

mental algorithms (Frazier and Fodor, 1978; Just and Carpenter, 1980; Abney and John-

son, 1991; Tanenhaus et al., 1995; Almor, 1999; Gibson, 2000; Coltheart et al., 2001; Hale,

2001; Lewis and Vasishth, 2005; Levy, 2008, inter alia)? Such questions are often studied

by caching out a theory of language processing in an experimental stimulus, collecting hu-

man responses, and fitting a regression model to test whether measures show the expected

effects (e.g. Grodner and Gibson, 2005). Because the human mind operates in real time

and experiences computational bottlenecks of various kinds (Bouma and De Voogd, 1974;

Ehrlich and Rayner, 1981; Mitchell, 1984; Mollica and Piantadosi, 2017), delayed effects

in human sentence processing may be pervasive. In light of this consideration, this thesis

advocates recasting many kinds of psycholinguistic regression analyses as a form of dy-

namical systems modeling (Ljung and Glad, 1994) that seeks to uncover how variables of

interest influence human experimental measures over time. I will argue that widely-used

analysis methods in psycholinguistics struggle to capture processing effects that linger over

time (henceforth, temporal diffusion), with potential implications for interpretation, test-

ing, and (consequently) scientific theory selection. I will propose a novel time series model

— continuous-time deconvolutional regression (CDR) — that addresses this concern, and

I will show empirically that it both closely recovers ground truth dynamics in synthetic

data and finds detailed and plausible estimates of dynamics in human data from multiple

experimental modalities, with better generalization error than standard statistical models.
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(d) CDR (asynchronous data)

Figure 1.1: Visual comparison of time series models. In linear models (a), the response
(y-axis) is independent of previous events, while in FIR models (b), previous events are
assumed to be equidistant in time (x-axis). In CDR models (c and d), the response is a
weighted sum of all previous events, with weights provided by the IRF as a function of
continuous time. Because the IRF is continuous, the response can be queried at any point,
permitting direct application to both synchronous (c) and asynchronous (d) stimulus and
response measures.

I will additionally describe scientific insights afforded by CDR analysis into the role of lexi-

cal retrieval, prediction, and working memory in human sentence processing. Finally, I will

describe and empirically evaluate a deep neural extension of CDR that relaxes many sim-

plifying assumptions and permits detailed insights into cognitive dynamics that are difficult

to obtain using existing methods. The conceptual and empirical advantages of CDR make
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it a powerful new tool for studying the mind.

Temporal diffusion has been carefully studied in some psychological subfields. For ex-

ample, a sizeable literature on fMRI has investigated the structure of the hemodynamic

response function (HRF), which is known to govern the relatively slow response of blood

oxygenation to neuronal activity (Boynton et al., 1996; Friston et al., 1998b; H. Glover,

1999; Ward, 2006; Lindquist and Wager, 2007; Lindquist et al., 2009). The HRF is an

instantiation of the more general notion of impulse response function (IRF) from the field

of signal processing (Madisetti, 1997), where the response h ∗ g of a dynamical system as

a function of time is described as a convolution over time of an impulse h with an IRF g

as shown in eq. 1.1, where τ is bound by the integral operation and ranges over the time

interval [0, t], and h(τ) is the impulse at time τ :1

(h ∗ g)(t) =

∫ t

0
h(τ)g(t− τ)dτ (1.1)

The process of deconvolution seeks to infer the structure of g (the IRF) given that the

impulses h (stimuli) and responses h ∗ g (experimental measures) are known.

CDR recasts the sequences of stimuli (predictors) and responses as convolutionally-

related signals whose temporal relationship is mediated by one or more continuous-time

IRFs with shape estimated from data. By convolving predictors with their estimated IRFs,

as in eq. 1.1, the model can condition its predictions on the entire history of stimuli en-

countered up to a given point in an experiment, rather than e.g. on the properties of the

current word alone. And by estimating the shape of the IRF from data, the model can

reveal fine-grained patterns of temporal structure that are otherwise difficult to obtain.

Established techniques for IRF identification, including finite impulse response (FIR)

1 Throughout this paper, vectors and matrices are notated in bold lowercase and uppercase, respectively
(e.g. u, U). Objects with indexed names are designated using subscripts (e.g. vr). Vector and matrix
indexing operations are notated using subscript square brackets, and slice operations are notated using ∗
(e.g. X[∗,k] denotes the kth column of matrix X). Hadamard (pointwise) products are notated using �. The
notations 0 and 1 designate conformable column vectors of 0’s and 1’s, respectively.
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(also known as distributed lag, or DL) models (Koyck, 1954; Griliches, 1967; Sims, 1971;

Robinson, 1975; Neuvo et al., 1984; Saramaeki et al., 1993) and vector autoregressive (VAR)

models (Sims, 1980), implicitly assume that the time series is sampled at a fixed frequency.

This assumption is often ill-suited to language research because words in natural language

have variable duration, whether spoken or read. The number of parameters in discrete-

time deconvolutional models is also linear (or super-linear) on the length of the history

window, which can easily lead to overparameterization. These objections equally apply

to the common technique in psycholinguistics of injecting “spillover” regressors into linear

models (i.e. adding coefficients for predictors associated with preceding events, e.g. Erlich

and Rayner, 1983; Mitchell, 1984), which turns out to be FIR/DL by a different name

(§2.2).

By contrast, CDR defines IRFs as parametric functions of continuous time and applies

the same continuous IRF to all events in the history, yielding a model that can be applied

to non-uniform time series (such as language) without distorting the temporal or featural

structure of the stimulus sequence, with constant parametric complexity on the length of

the history window. The continuous-time nature of CDR also allows the estimated response

to be queried at any timepoint without reliance on post-hoc techniques for interpolation or

extrapolation.

A visual comparison of CDR and FIR models is given in Figure 1.1. An ordinary

least-squares model (Figure 1.1a) considers the response to be independent of all preceding

stimulus events:2

y ∼ N (Xb, σ2) (1.2)

FIR models relax this independence assumption at the expense of model complexity by

including additional weights for a fixed number of preceding events (Figure 1.1b).3 Note

2y is the response vector, X is the design matrix of predictors, b is the vector of coefficients, and σ2 is
the variance of the error distribution.

3FIR is a special case of the linear model given in eq. 1.2, with a structured design matrix X containing
O values for each predictor representing a history of O timesteps into the past (see §2.2).
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that FIR assumes that events are equidistant in time, or, equivalently, that variation in

temporal spacing is inconsequential (an assumption implicitly made by spillover models

in psycholinguistics). By contrast, CDR retains real-valued timestamps of the stimulus

events and fits continuous IRFs that govern the influence of each predictor on the response

as a function of time (Figures 1.1c and 1.1d). Unlike linear models, CDR is agnostic as

to whether the stimuli and responses are measured at the same time (Figure 1.1c) or at

different times (Figure 1.1d), a useful property for applications like fMRI modeling in which

stimuli have variable duration but responses are measured at a fixed frequency (see §4.3 for

discussion).

This thesis defines the CDR model and evaluates it empirically, assessing the influence of

factors such as noise, multicollinearity, IRF misspecification, and hyperparameter selection

on the final estimates, and additionally using CDR for IRF discovery from reading data and

for hemodynamic response (HRF) discovery from fMRI data. The latter application is an

appealing use case for continuous-time deconvolution because of the asynchrony between

stimuli (words) and responses (brain scans) in naturalistic fMRI studies of language (§4.3).

The structure of the thesis is as follows. Chapter 2 (1) motivates continuous-time decon-

volutional modeling in light of ongoing methodological challenges and theoretical questions

in psycholinguistics and (2) relates CDR conceptually to existing deconvolutional methods.

Chapter 3 defines the CDR model, exposits some of its mathematical properties, and de-

scribes a documented open-source Python implementation. Chapter 4 empirically evaluates

CDR on synthetic data as well as human subjects data from self-paced reading, eye-tracking

during reading, and fMRI studies of human language comprehension. Chapters 5–7 deploy

CDR to address outstanding research questions in human sentence processing: whether

word retrieval and prediction are supported by distinct cognitive mechanisms (Chapter 5),

whether predictive processing in naturalistic language comprehension is structure-sensitive

(Chapter 6), whether naturalistic language processing exhibits working memory effects

(Chapter 7), and whether neural resources for predictive coding and working memory in the
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language domain are shared with other domains of cognition (Chapters 6 and 7). Chapter 8

(1) defines the continuous-time deconvolutional regressive neural network (CDRNN), an

extension of CDR that implements the IRF as a deep neural projection relating predictors

and their timestamps to response estimates and their error distributions, thereby relaxing

many of the remaining simplifying assumptions of CDR and thereby potentially allowing

more flexible discovery of complex non-linear dynamics in human sentence processing, and

(2) shows empirically that CDRNN also recovers ground truth models from synthetic data

and compares favorably to CDR and other baselines on human-generated data, while also

supporting detailed insights into underlying dynamics that cannot easily be obtained using

alternative approaches. Chapter 9 concludes.
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Chapter 2

Motivating the CDR Approach

2.1 Temporal Diffusion in Psycholinguistics: Methodological

and Theoretical Considerations

The issue of temporal diffusion of effects has been recognized for decades by psycholinguists

as being both methodologically and theoretically important (Morton, 1964; Bouma and

De Voogd, 1974; Mitchell, 1984; Vasishth, 2006), although the kind and extent of this

diffusion in human sentence comprehension is a matter of debate.

From a methodological standpoint, much behavioral methodology in psycholinguistics

is based on the assumption that online behavioral measures like response times from self-

paced reading or fixation durations from eye-tracking reveal local fluctuations of processing

load in the language comprehension system that are closely time-locked to the linguistic

signal. An early and influential theoretical characterization of this cognitive-behavioral link

is the eye-mind hypothesis of Just and Carpenter (1980), which in its strong form posits

a strict temporal alignment between attention and eye-movements (i.e. you look at what

you are thinking about). This position predicts virtually no temporal diffusion of effects

in reading measures, since information processing related to a particular word should fully

terminate before attention is shifted to another word in the form of a saccade (a large-scale

jump of the eyes to a new position on the screen). Although some early studies of eye

movements indeed suggested little influence of preceding words on current fixation dura-

tions (Carpenter and Just, 1983), a great deal of evidence has subsequently accumulated

both for the possibility of covert attention to unfixated objects (Posner, 1980; Posner et al.,
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1987; Carrasco and McElree, 2001; Engbert and Kliegl, 2003, inter alia) and for temporal

diffusion of various psycholinguistic effects, including word length (Kliegl et al., 2006; Pol-

latsek et al., 2008; Pynte et al., 2008), word frequency (Rayner and Duffy, 1986; Pollatsek

et al., 2008; Staub and Clifton, 2006; Staub, 2011; Findelsberger et al., 2019), word pre-

dictability (Rayner et al., 2004b; Ashby et al., 2005; Smith and Levy, 2013), and memory

retrieval cost (Warren and Gibson, 2002; Grodner and Gibson, 2005; Van Dyke, 2007). The

proper interpretation of this evidence is a subject of ongoing theoretical debate (Reichle

et al., 1998; Engbert et al., 2005; Reichle et al., 2009; Radach and Kennedy, 2013; Reichle

and Drieghe, 2014, inter alia), especially in the reading literature, where some prominent

computational models of reading (e.g. Reichle et al., 1998) require serial allocation of at-

tention and thus disallow covert attention to preceding words. Although advocates of this

position have argued that diffuse effects reported during eye-tracking are driven by mea-

surement error (Reichle and Drieghe, 2014), this explanation cannot account for well known

effects of temporal diffusion in other experimental paradigms, such as “spillover” effects in

self-paced reading (e.g. Grodner and Gibson, 2005) and event-related potential (ERP) com-

ponents from electroencephalography (EEG, Kutas and Hillyard, 1984), which occur over

long enough time intervals (up to 900ms depending on the component of interest) that the

responses to multiple words regularly overlap during naturalistic sentence comprehension

(Smith and Kutas, 2015). For these reasons, the existence of temporally diffuse effects is

largely taken for granted by psycholinguists, and controlling for it statistically is considered

best practice (McDonough and Trofimovich, 2012).

The methodological importance of the temporal diffusion problem depends not only on

latency in the underlying cognitive mechanisms but also on latency in the experimental

measure. For example, response times in eye-tracking studies contain latencies due to

planning and executing a saccade, over and above latency in information processing at

the neural substrate (Travis, 1936; Hallett, 1978; Theeuwes et al., 1998; Yang et al., 2002;

Altmann, 2010, inter alia). Hemodynamic measures like functional magnetic resonance
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imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) are a more extreme

example of this problem, since the measurable response of blood oxygenation to neuronal

activity peaks at a latency of around 6s and continues for over 30s (Boynton et al., 1996).

Although such latencies are particular to the response measure and may have little direct

bearing on cognitive theories, it is nonetheless important to develop methodology to control

for them, especially in neuroimaging applications where measurement latency is known to

have much more sluggish dynamics than the underlying neuronal timecourses of interest.

Temporal diffusion is relevant to a number of questions in psycholinguistic theory. As

suggested by the foregoing discussion, one such question concerns the role of attention in

language processing. Numerous studies have advocated the existence of a mental “buffer”

that allows information processing to lag behind perception (Morton, 1964; Bouma and

De Voogd, 1974; Mitchell, 1984; Sharkey and Sharkey, 1987; Tabor et al., 2004; Jacquemot

and Scott, 2006; Mollica and Piantadosi, 2017), and numerous additional studies implicitly

appeal to such a construct in explaining “spillover” effects as residual processing of previ-

ously encountered words (Grodner and Gibson, 2005; Vasishth and Lewis, 2006; Smith and

Levy, 2013, inter alia). Under this view, words enter the language processing system and

impose a processing burden that may not be fully discharged by the time subsequent words

are encountered. A short-term buffer system that supports such lags by holding percep-

tual units in memory until they can be processed may be particularly adapted to real-time

speech processing settings in which comprehenders cannot control the rate of input (Dahan,

2010; Mollica and Piantadosi, 2017). This proposal is ideally suited to continuous-time de-

convolutional analysis such as CDR, which can directly estimate the rates at which different

kinds of processing unfold.

Temporal diffusion is also of indirect theoretical importance to psycholinguistic theories

that make temporally fine-grained predictions about processing effects. One high profile

example concerns the debate between memory-based (Miller and Chomsky, 1963; Gibson,

2000; Lewis and Vasishth, 2005) and expectation-based (Hale, 2001; Levy, 2008) theories
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of comprehension effort in human sentence processing. Memory-based theories predict pro-

cessing cost to be proportional to the difficulty of retrieving referents from working memory

in order to construct syntactic dependencies, with difficulty inversely related to the recency

of the referent’s latest mention. Thus, longer dependencies are expected to be more costly

than shorter dependencies. Expectation-based theories predict processing cost to be in-

versely related to the contextual predictability of words. In the case of object-extracted

relative clauses like the following from Levy (2008), both theories predict a local increase in

processing difficulty due to the object extraction but disagree as to where in the sentence

it will occur:

The reporter who the photographer sent to the editor hoped for a good story.

Memory-based accounts predict difficulty at sent, since this is where a long syntactic depen-

dency (to reporter) must be resolved, while expectation-based accounts predict difficulty at

the, since object extractions are less frequent than subject extractions in English, making

the subject noun phrase the photographer unexpected. Although evidence from English

indicates that the cost resides primarily at sent (Gordon et al., 2001; Grodner and Gibson,

2005; Staub, 2010), favoring memory-based models, the ensemble of cross-linguistic evidence

on this question is more mixed, leading some to advocate the co-existence of both kinds of

mechanisms (Levy et al., 2013). However, assumptions about timecourse (i.e. that costs are

paid primarily on the costly word) are of crucial importance in interpreting these patterns.

If processing costs actually diffuse across time, the predictions of these theories become

harder to disentangle, since the processing cost at both locations is determined not only by

the cost of processing the critical word but also by any residual cost of processing its sen-

tential prefix. This is in fact one explanation considered by advocates of expectation-based

models of language comprehension (Levy, 2008).

A related theoretical debate that hinges critically on temporal diffusion concerns the

predicted influence of syntactic dependencies on sentence processing within memory-based
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accounts. An influential memory-based theory of sentence comprehension effort is the de-

pendency locality theory (DLT) of Gibson (2000). The DLT predicts processing difficulty

proportional to the number of discourse referents that intervene in a syntactic dependency

at the point at which it can be computed. In the example above, the DLT assigns an inte-

gration cost of 1 to the verb sent because one discourse referent (photographer) intervenes

between sent and its extracted object (reporter). While this locality effect prediction has

been borne out using constructed stimuli in English (Gibson and Ko, 1998; Grodner and

Gibson, 2005), the opposite pattern (i.e. an anti-locality effect, or decreased processing cost

for dependencies with many intervening discourse referents) has also been attested, both

using naturalistic stimuli in English (van Schijndel and Schuler, 2013) as well as using con-

structed stimuli in head-final languages like German (Konieczny, 2000), Japanese (Nakatani

and Gibson, 2010), and Hindi (Vasishth, 2003). These countervailing sources of evidence

motivated Vasishth (2006) to re-evaluate the Grodner and Gibson (2005) data from English

and show that locality effects are no longer significant under better control for temporal

diffusion (i.e. considering “spillover” effects from preceding words).

In light of the above considerations, temporal diffusion may also play an underappre-

ciated role even in studies of phenomena that do not directly concern effect timecourses.

For example, while many studies in psycholinguistics (such as those cited above) include

spillover effects in analyses, there are also many that do not, even in naturalistic settings

where the rate of presentation is not controlled (e.g. Smith and Levy, 2008; Boston et al.,

2008; Roark et al., 2009; Frank and Bod, 2011; Fossum and Levy, 2012; van Schijndel and

Schuler, 2015) and diffusion might be especially pronounced (§2.1.3). In general, such stud-

ies are not directly concerned with effect timecourses, and omission of spillover regressors

embodies an implicit belief that an in situ model with no controls for diffusion is “good

enough” to permit discovery of the relevant patterns. However, controlling for temporal

diffusion is important regardless of whether the central research question directly concerns

timecourses because failing to do so can lead to false negatives (e.g. failing to detect an effect
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because it occurred later than expected) or misattribution of variance due to temporally

diffuse effects.

For example, using LME to evaluate the sensitivity of self-paced reading in the Nat-

ural Stories corpus (Futrell et al., 2018) to theory-driven predictors of memory retrieval

cost shows significant main effects of syntactic constituent wrap-up (p = 2.33e-14) and

syntactic dependency length (p = 4.87e-10; Shain et al., 2016). However, spilling over one

control variable (probabilistic context-free grammar surprisal) one position (from in situ to

spillover-1) causes the effects of interest to vanish (p = 0.816 for constituent wrap-up and

p = 0.370 for dependency length).

The contrast between these two sets of results comes down to different assumptions about

timecourse that are both reasonable a priori (i.e. whether the locus of surprisal effects should

fall on the current word or spill over into the following one). For this particular dataset

and model definition, it turns out that spilling over surprisal produces a stronger baseline

that ultimately casts doubt on results obtained using a baseline inspired by preceding work.

Such an outcome can be difficult to anticipate in advance. The possibility of such discrepant

results based solely on assumptions about timecourse should motivate increased attention

to diffusion of effects in psycholinguistic modeling.

The importance of controlling for temporal diffusion is of course dependent on experi-

mental design. For example, there may be little impact from diffusion in a lexical decision

task based on words presented in isolation with long intervals in between, while there is

almost certainly a large influence of diffusion in fMRI scans of subjects listening to running

speech. Psycholinguists and cognitive scientists are increasingly using naturalistic experi-

ments in order to improve ecological validity and minimize task artifacts from artificially

constructed designs (Demberg and Keller, 2008; Hasson and Honey, 2012; Campbell and

Tyler, 2018). As suggested by the discussion of Shain et al. (2016) above, controlling for

temporal diffusion may be of particular importance in such a setting, since measurements

are taken from subjects carrying out rapid incremental sentence comprehension and multi-
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ple word fixations may take place within a short span of time (Morton, 1964; Kolers, 1976).

It is nonetheless possible that even experiments with carefully constructed stimuli might

benefit from improved control of temporal diffusion. For example, even holding prefixes of

linguistic stimuli fixed up to a critical region cannot entirely control the influence of tem-

poral diffusion; the same prefix can be fixated differently in different presentations, both

within and across subjects, potentially leading to variation in patterns of diffuse processing

that may affect the response in the critical region.

In summary, the existing psycholinguistic literature indicates that temporal diffusion is

an important factor in the study of human language processing, both because of method-

ological difficulties it presents for data analysis and interpretation, and because many psy-

cholinguistic theories make different predictions about effect timecourses.

2.1.1 Existing Methods for Handling Temporal Diffusion in Psycholin-

guistics

Psycholinguists currently use one of two classes of methods for controlling and/or measuring

temporal diffusion, one experimental and one statistical. The experimental method is to

design the study in a way that minimizes the potential influence of temporal diffusion. For

example, some cognitive processes can be studied by presenting participants with isolated

words, as is done in the widely-used lexical decision task (McKoon and Ratcliff, 1979), in

which participants judge whether a string presented on the screen constitutes an existing

word of their language, and their reaction times are measured. In these kinds of studies,

diffuse processing effects can reasonably be assumed to vanish during the inter-stimulus

interval (ISI). Another option is to directly control the rate of stimulus presentation using

rapid serial visual presentation (RSVP), in which sentences are presented to participants

one word at a time at a fixed rate. RSVP is the dominant presentation method in EEG

studies of language processing, since it permits clear separation of ERP components (Kutas

and Hillyard, 1980, 1984). RSVP has also been used in many behavioral studies of language

14



processing (Lawrence, 1971; Potter, 1984; Kanwisher, 1987; McElree, 2000; McElree et al.,

2003; Mollica and Piantadosi, 2017, inter alia).

Although such experimental manipulations reduce the influence of temporal diffusion,

this reduction comes at the expense of both the ecological validity and the generality of

the experimental paradigm. First, as discussed in more detail in §2.1.3, isolated word pro-

cessing and RVSP are not the circumstances for which the human language comprehension

system has been primarily adapted. Using these paradigms may distort the underlying

cognitive processes of interest, and findings using them should ideally be replicated in more

naturalistic settings (Hasson and Honey, 2012). Second, isolated word presentation or fixed-

rate presentation (RSVP) are limited in the range of psycholinguistic hypotheses that they

can be used to test. Isolated word presentation cannot be used to test theories about the

influence of context on human sentence comprehension (such as the memory-based and

expectation-based models cited above), and RSVP rules out the use of word-level reaction

times (e.g. eye-tracking during reading or self-paced reading) as indicators of incremental

comprehension difficulty, since it eliminates participants’ control over word-by-word process-

ing rates. This is a serious limitation because word-level reaction times are an inexpensive

and widely-used source of evidence about incremental language processing.

Because of these issues, psycholinguistic study design often uses statistical rather than

experimental control over temporal diffusion. Overwhelmingly, this is done using finite

impulse response (FIR) modeling — typically referred to by psycholinguists as regression

with “spillover” (Mitchell, 1984) — as described in §2.2.1 FIR analyses can be estimated

using ordinary least squares (OLS) (Grodner and Gibson, 2005) or linear mixed-effects

(LME) (Demberg and Keller, 2008), and non-linear generalizations of FIR can be estimated

1Measurement specific impulse response functions have also been used, when available, most notably
the use of preconvolution with the canonical hemodynamic response (Boynton et al., 1996) in fMRI studies
of language processing (Willems et al., 2015; Brennan et al., 2016; Henderson et al., 2016, inter alia). A
limitation of this approach is that the response function is based on group-level brain-wide averages and
cannot adapt to individual participants or brain regions. It can therefore be a poor fit to the true underlying
response in the experimental sample (Handwerker et al., 2004).
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using generalized additive (GAM) models (Smith and Levy, 2013).2

An FIR regression of order o is a linear regression model that conditions the response

at time t not only on properties of the event at time t but also on the properties of the

o − 1 preceding events at time t − 1, . . . , t − o + 1 (see §2.2). When events are words, this

allows the model to condition the response (e.g. eye-tracking fixation duration) not only on

the properties of the word currently being fixated but also on the properties of the words

fixated during the preceding o − 1 fixations. If effects are temporally diffuse, then the

coefficients of effects at preceding words should on average be non-zero, enabling statistical

control over temporal diffusion of effects. The principal drawback of FIR for psycholinguistic

data analysis is that psycholinguistic time series often consist of sequences of discrete events

(e.g. word fixations) that have variable duration, and existing distributed lag models cannot

directly handle such data. To apply FIR to such time series, psycholinguistic studies usually

ignore the amount of clock time elapsed between events and consider only the relative order

of events in the time series. If event durations are variable and the underlying response is

a function of real time rather than relative event index, FIR modeling can be distortionary.

For example, the corpus frequency of the preceding word may impact the current word’s

fixation duration differently depending on whether the preceding word was fixated 100ms

ago vs. 1000ms ago. FIR/spillover cannot account for this possibility, while CDR can (see

§2.2).

2.1.2 Types of Temporally Diffuse Effects in Language Processing

This section briefly reviews what is currently known about temporal diffusion of cognitive

processes in psycholinguistic measures. For the purposes of this discussion, I set aside hemo-

2 GAM models (Hastie and Tibshirani, 1986) relax the linearity requirement of linear models, allowing
the predictors to be related to the response via arbitrary smooth functions. A GAM with a Gaussian linking
function has the following form:

y ∼ N (b0 + f1(x1) + f2(x2) + . . .+ fk(xk), σ2) (2.1)
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dynamic measures like fMRI because latency in the measurement technique is so extreme

that it swamps differences in latency between types of cognitive processes (Boynton et al.,

1996). I focus instead on evidence from behavioral (e.g. eye-tracking) and electrophysiologi-

cal (e.g. EEG) paradigms, which have high temporal resolution. Research in these domains

has provided evidence of latency in (1) perceptual and motor processes, (2) lexical access,

(3) working memory retrieval, and (4) predictive processing.

The linguistic signal is first conveyed to the mind by sensory systems (typically visual

or auditory, although tactile systems are implicated in e.g. braille reading), and, in the

case of reading, the rate of this conveyance is also mediated by comprehenders’ motor pro-

cesses. These sensory and motor processes can exhibit latencies that affect psycholinguistic

response measures. EEG research sheds light on the timecourse of responses to visual and

auditory stimulation. Although the bulk of these responses are quite rapid (within 100ms

of stimulus onset, Woodman, 2010; Pratt, 2011), certain higher-level perceptual processes

can last substantially longer, including phoneme recognition (Näätänen et al., 1997, 2007)

and visual word recognition (Hauk et al., 2006). Psycholinguistic investigations of reading

typically control for visual perception costs through orthographic variables like word length

(in characters). Word length effects have been shown to be temporally diffuse (Kliegl et al.,

2006; Pollatsek et al., 2008; Pynte et al., 2008), suggesting that visual processing latencies

can register in the reading record. Response times in human reading are also affected by

temporally diffuse processes in the motor system. For example, as discussed above, it takes

time (around 130ms) to plan and execute a visual saccade (Travis, 1936; Hallett, 1978;

Theeuwes et al., 1998; Yang et al., 2002; Altmann, 2010), although such latencies may in-

teract with other processing latencies in non-linear ways (Altmann, 2010). Larger saccades

are also known to increase fixation durations, not only on the current word but also on the

subsequent one (Kliegl et al., 2006). These findings suggest that even low-level perceptual

and motor processes may diffuse across time to such an extent that they can measurably

affect processing of subsequent words.
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Diffuse word frequency effects are one of the most widely attested forms of temporal

diffusion in the psycholinguistic literature. Many studies have reported that the cost of

retrieving rare words from the mental lexicon (as measured by corpus-based lexical fre-

quencies) spills over onto the subsequent word (Inhoff and Rayner, 1986; Rayner and Duffy,

1986; Ashby et al., 2005; Kliegl et al., 2006; Staub and Clifton, 2006; Demberg and Keller,

2008; Pollatsek et al., 2008; Pynte et al., 2008; Staub, 2011; Findelsberger et al., 2019). Since

word frequency is often used as a proxy for lexical retrieval difficulty under the hypothe-

sis that frequency of access modulates the strength of a word’s representation in memory

(Staub, 2015), these findings are typically interpreted as driven by lexical access processes

that do not fully finish by the time processing of the subsequent word begins (Ashby et al.,

2005).

It is widely believed in psycholinguistics (1) that incremental sentence comprehension

recruits working memory resources in order to store and update structured representations

of the unfolding sentence and (2) that the computational demands placed on these memory

systems vary as a function of the structural properties of the sentence (Miller and Chom-

sky, 1963; Gibson, 1998; McElree, 2000; Warren and Gibson, 2002; Lewis and Vasishth,

2005; Rasmussen and Schuler, 2018). Studies that explore such hypotheses regularly find

that memory-related processing difficulty spills over onto the subsequent word. Erlich and

Rayner (1983) and Jaffe et al. (2018) report that the cost of resolving an anaphor to low-

activation referents is realized primarily on the word following the anaphor. Warren and

Gibson (2002) and Grodner and Gibson (2005) report that costs related to constructing long

dependencies during self-paced reading can be detected on the word after the dependency

is complete. Van Dyke (2007) shows that a form of syntactic similarity-based interference,

whereby the difficulty of constructing a syntactic dependency is increased by the presence

of an intervener with syntactically similar features to the cue target, spilled over onto the

following word. Pearlmutter et al. (1999) and Wagers et al. (2009) find that costs related

to constructing a subject-verb agreement dependency in the presence of an attractor could
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be observed following the verb. The ensemble of this evidence suggests that processing

of subsequent words can begin before memory retrieval operations of various kinds have

completed, leaving a portion of the retrieval cost to be paid on future words.

The contextual predictability of words is known to be an important determinant of

processing difficulty, such that highly expected words contribute a small processing burden

and highly unexpected words contribute a large one (Hale, 2001; Levy, 2008). Many studies

have found that this word predictability effect can spill over into the processing of subsequent

words (Balota et al., 1985; Rayner et al., 2004a; Ashby et al., 2005; Frisson et al., 2005; Smith

and Levy, 2013; Delogu et al., 2017). One of the most extensive explorations of the temporal

diffusion of word predictability is Smith and Levy (2013), discussed in §2.1.3, who find

predictability effects up to three words after the unexpected word. These findings suggest

that costs associated with unexpected material (or, conversely, facilitations associated with

expected material) may be realized in psycholinguistic measures over a fairly long span of

time.

Together, the results reviewed here indicate that the effects of many psycholinguistic

phenomena diffuse across time and stress the importance of controlling for this possibility

in the statistical model. While the resolution of the timecourse insights afforded by most of

these studies is very coarse (typically, how much the next fixation is affected), the interpre-

tations of these diffusion patterns regularly appeal to continuous-time notions: processing

burdens associated with words or structures are thought to be discharged in the mind at a

rate that may not fully keep pace with the rate at which words are encountered, leading to

processing costs that bleed into future words (Morton, 1964; Mitchell, 1984; Ashby et al.,

2005, inter alia). Given this, CDR stands to shed light on underlying sentence process-

ing mechanisms, thanks to its ability to go beyond word-discretized measures of diffusion

and directly estimate the shape of the response function, by exploiting naturally occurring

variation in word duration.
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2.1.3 Temporal Diffusion in Naturalistic Vs. Constructed Psycholinguis-

tic Experiments

Observer’s paradox is a serious obstacle in the study of human cognition: the mind is a

complex system that adapts to the experimental environment in unpredictable ways (Miller

and Cohen, 2001; Sreenivasan et al., 2014; D’Esposito and Postle, 2015; Campbell and

Tyler, 2018). The dominant experimental paradigm in psycholinguistics is to construct

stimuli that directly manipulate a linguistic variable of interest and assess the impact of this

manipulation on a response measure (e.g. Ferreira and Clifton, 1986; MacDonald et al., 1994;

Trueswell et al., 1994; Tanenhaus et al., 1995; Gibson, 1998; Kutas and Federmeier, 2000,

among many others). This constructed stimulus paradigm is well suited to testing causal

relationships between the manipulated variables and the measured response. However,

human language is so complex that it is usually impossible to fully isolate the variable

of interest from possible confounds using experimental design alone (Cutler, 1981), and

therefore some amount of statistical control over confounding variables is usually necessary

over and above even the most careful experimental design. More fundamentally, the more

control is exercised over the experimental conditions, the more dissimilar the experiment

becomes from the functional conditions for which human language capacity evolved, and the

greater the chance that results may reflect the activity of cognitive mechanisms that usually

play little or no role in language comprehension (Hasson and Honey, 2012; Richlan et al.,

2013; Hasson et al., 2018; Campbell and Tyler, 2018). While this possibility is difficult

to evaluate in the context of global behavioral measures, recent neuroscientific evidence

shows that domain-general executive control regions activate during the processing of some

artificially constructed language stimuli (Kaan and Swaab, 2002; Kuperberg et al., 2003;

Novick et al., 2005; January et al., 2009) but fail to activate during the processing of

naturalistic stimuli (Blank and Fedorenko, 2017). Such results have led some to argue that

artificially constructed experimental stimuli may increase general cognitive load by coercing

comprehension into problem solving, thereby engaging mechanisms that play little role
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in everyday sentence processing (Campbell and Tyler, 2018; Diachek et al., 2020; Wehbe

et al., 2020). While constructed experiments are an invaluable source of evidence about

human language comprehension, patterns revealed by such experiments should ideally also

be detectable in more naturalistic settings. It is therefore important to pursue questions

about language processing using both approaches in parallel (Hasson et al., 2018), and a

growing number of studies in psycholinguistics and cognitive neuroscience are using context-

rich naturalistic language stimuli (e.g. stories and informative pieces) in their designs (Speer

et al., 2007; Demberg and Keller, 2008; Yarkoni et al., 2008; Speer et al., 2009; Whitney

et al., 2009; Frank and Bod, 2011; Fossum and Levy, 2012; Wehbe et al., 2014; Frank et al.,

2015; Hale et al., 2015; van Schijndel and Schuler, 2015; Henderson et al., 2015; Brennan

et al., 2016; Henderson et al., 2016; Huth et al., 2016; de Heer et al., 2017; Bhattasali et al.,

2018; Brennan and Hale, 2019, inter alia).

To my knowledge, no previous study has directly investigated the degree of temporal dif-

fusion in naturalistic psycholinguistic experiments relative to constructed psycholinguistic

experiments. That said, there are several reasons to suppose that controlling for temporal

diffusion may be of particular importance in a naturalistic paradigm. First, naturalistic

experiments tend to be used to evaluate “broad-coverage” features that are expected to in-

fluence the response at every word (e.g. Demberg and Keller, 2008; Smith and Levy, 2013),3

while this is not necessarily the case in constructed experiments. While some constructed

experiments indeed examine the response at every word (e.g. Grodner and Gibson, 2005),

others are interested in the response at a critical region where the manipulation is expected

to produce an effect (e.g. Rayner et al., 1983). If the research design provides a critical

region and the prefix to the critical region is carefully controlled, the effects of temporal

diffusion are plausibly minimal, and differences at or shortly after the critical region can

be attributed to the experimental manipulation (Rayner et al., 1989). Otherwise, any com-

3This generalization is not exceptionless; see e.g. Jaffe et al. (2018), who analyze a subset of words in a
naturalistic study that were relevant to coreference resolution.
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parison between responses at two different words of the stimulus should take into account

potential differences in processing demands imposed by those words’ contexts, especially

if effects diffuse across time (Vasishth, 2006). Since word-by-word analyses of naturalistic

sentence processing data seek to infer aggregate effect sizes from many words whose con-

texts all differ, they are plausibly more susceptible to confounds from temporal diffusion

than controlled experiments with a critical region.

Second, the hypothesis that the processing of neighboring words will overlap during

naturalistic sentence comprehension is suggested by prior knowledge about both (1) the

neural response to language and (2) the rate at which words typically enter the language

comprehension system. It is well established that scalp potentials can be deflected up to

900ms or more after word onset (Kaan, 2007), especially in the case of words that are

particularly difficult to process (Kaan et al., 2000). Word durations in natural language

are typically much shorter than this, with observational studies generally reporting average

word durations on the order of 200-400ms, whether the presentation is visual (Rayner et al.,

1989; Futrell et al., 2018) or auditory (Tauroza and Allison, 1990). These two findings

suggest that (1) the neural response to a word can last more than three times longer than

the word’s presentation to the perceptual system and therefore that (2) the processing of

previously-encountered words will continue even as future words are encountered (Smith

and Kutas, 2015). In word-by-word analyses such as those that are typical of naturalistic

studies, this diffusion may have a measurable impact on results.

Third, while many analyses of constructed experiments consider short spillover windows

(typically 0 or 1 previous words, see e.g. studies reviewed in Rayner, 1998), at least one

previous naturalistic reading study in psycholinguistics (Smith and Levy, 2013) has con-

sidered longer windows and found evidence of quite diffuse effects, with significant word

predictability effects up to 3 words into the future in a self-paced reading experiment. Fur-

thermore, the fitted impulse response to word predictability in Smith and Levy (2013) is

not monotonic; there is relatively little effect on the costly word, a large effect on the sub-
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sequent word, and an attenuated effect on the remaining two words in the discrete impulse

response kernel. This indicates not only that the processing cost of word predictability can

diffuse across time but that it can do so to such an extent that it is primarily realized on

other words. Such a diffuse, late-peaking response pattern is not typically reported by con-

structed studies. This possibly indicates a more pronounced influence of temporal diffusion

in the naturalistic paradigm, since participants are carrying out rapid incremental sentence

comprehension where multiple words are processed within a short span of time (Morton,

1964; Kolers, 1976).

In summary, the naturalistic experimental paradigm may be more influenced by tempo-

ral diffusion than the constructed paradigm, both because lack of control over word contexts

increases the need to control for a diffuse influence of these contexts, and because natural-

istic studies tend to focus on word-by-word modeling of responses under conditions that

plausibly do not fully separate the processing costs of individual words.

2.1.4 Example: Temporal Diffusion of Word Predictability Effects

One of the most robust findings in psycholinguistics is that human language processing

mechanisms are sensitive to how predictable a word is given its context (Ehrlich and Rayner,

1981; Balota et al., 1985; Rayner et al., 2004a; Frisson et al., 2005; Frank and Bod, 2011;

Rayner et al., 2011; Smith and Levy, 2013; Willems et al., 2015; Delogu et al., 2017, inter

alia). For example, in isolation, the word bottle is more frequent and will be less costly to

process than the word kettle, but when prefixed by the pot calling the ..., the word kettle is

more expected and will be less costly to process than the word bottle. Predictability effects

are also widely reported to spill over into subsequent words (Balota et al., 1985; Rayner

et al., 2004a; Ashby et al., 2005; Frisson et al., 2005; Smith and Levy, 2013; Delogu et al.,

2017). For instance, according to studies like the above, in the previous example, the word

following bottle will also on average be processed more slowly than the word following kettle.
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Although the existence of temporally diffuse predictability effects is fairly uncontro-

versial, different theories of the mechanisms that underlie them make different predictions

about the shape of the response function (Reichle and Drieghe, 2014). For example, E-Z

Reader (Reichle et al., 1998), an influential computational model of eye movement control

during skilled reading, hypothesizes that attention is allocated serially word by word, and

that spillover effects are due to parafoveal processing. Under this account, predictability

facilitates lexical access of the fixated word, allowing the reader to begin to access the

following word’s properties even while it is in the parafoveal region and thus facilitating

processing of the subsequent word when it is fixated. As a result, E-Z Reader predicts

that any spillover effects — preditability-related or otherwise — will decrease rapidly and

monotonically, and will have little impact two or more words later because of parafoveal

limits (Reichle and Drieghe, 2014). Buffer-based accounts of temporal diffusion in language

processing (Morton, 1964; Mitchell, 1984; Mollica and Piantadosi, 2017) do not necessarily

make this prediction. Instead, the response function is thought to depend on both (1) the

speed at which sentence processing mechanisms can carry out various tasks (e.g. wordform

recognition vs. lexical access) and (2) the sequential ordering between tasks (e.g. the ex-

tent to which wordform recognition must precede lexical access, Hauk et al., 2006), and

the response is generally assumed to be a function of continuous time (Mollica and Pianta-

dosi, 2017) rather than driven by the spatial arrangement of words on a page. Under such

a view, the response function is not necessarily expected to decay rapidly (if the relevant

computations take a lot of time relative to the rate of stimulus presentation), nor is it neces-

sarily expected to decay monotonically (if some kinds of processing, e.g. syntactic structure

building, must wait to begin until other kinds have finished, e.g. lexical access). Since pre-

dictability effects are generally regarded as driven by late-stage processing (Reichle et al.,

2003), a buffer-based account might predict more extensive diffusion of predictability effects.

The shape of impulse response functions in human sentence processing therefore bears on

debates about the structure of the sentence processing architecture, and there does not yet
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appear to be a clear consensus on this question. In some eye-tracking studies, reported pre-

dictability effects are indeed larger at the critical word than at subsequent words (Rayner

et al., 2004a, more consistent with the parafoveal account), while in others predictability

effects at subsequent words are as large as or larger than those at the critical word (Smith

and Levy, 2013, more consistent with the buffer account). The improved detail of impulse

response estimation afforded by CDR could be used to shed light on this question.4

Beyond the allocation of attention underlying predictability effects, there is also debate

about why more predictable words are easier to process and less predictable words are

harder (see Kuperberg and Jaeger, 2016, for review). Of the many interesting questions

in this domain, one that has recently risen to prominence concerns whether predictability

effects are primarily driven by a cost or a facilitation. Influential information-theoretic

models of the role of expectation in human sentence comprehension (Hale, 2001; Levy,

2008), henceforth surprisal theory, argue for the existence of a processing cost propor-

tional to the Shannon information (Shannon, 1948) or surprisal of a word, which is equal

to the negative log probability of a word given its context according to some sequential

probability model. Subsequent work has argued that the assumption of highly incremental

predictive processing leads asymptotically to this predicted logarithmic relationship be-

tween contextual probability and processing cost, and has provided experimental evidence

that the relationship is indeed logarithmic (Smith and Levy, 2013). Thus, in this view, a

logarithmic relationship between predictability and processing effort is not simply a conve-

nient mathematical assumption, but a direct consequence of assuming highly incremental

processing mechanisms that reallocate resources between competing interpretations of the

unfolding sentence (Levy, 2008). This view also primarily frames predictability effects as a

4Note that this debate concerns the role of parafoveal processing in contributing to temporal diffusion
of predictability effects and thus is specific to the study of eye movements during reading. Yet temporally
diffuse effects are attested in many other experimental modalities for which such an explanation is not
available, including self-paced reading (Mitchell, 1984), word-by-word lexical decision (Remington et al.,
2018), and EEG (Smith and Kutas, 2015). Therefore, temporal diffusion of effects appears to be a more
fundamental characteristic of human cognition than the eye movement debates might suggest.
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cost : fully predictable words impose no cost (because they contribute zero bits of Shannon

information), and costs scale up (in principle, to infinity) in inverse proportion to the loga-

rithm of the word’s contextual probability. An alternative (and older) view of predictability

effects, henceforth pre-activation theory, is that they are driven by pre-activation by context

of upcoming words and structures, making processing of those words and structures easier

when they are eventually encountered (Kuperberg and Jaeger, 2016; Brothers and Kuper-

berg, 2021). Under this view, processing a particular word in a particular context imposes

a cost on the language processing system (e.g. retrieving the word and its properties from

the mental lexicon, constructing syntactic dependencies, updating semantic representations,

etc.) that can be partially paid in advance if the context renders the word predictable, but

must be paid in full once the word is encountered if the word could not be predicted. This

view primarily frames predictability effects as a facilitation: successful prediction eases fu-

ture processing, but processing can nonetheless be carried out even if the system entirely

failed to predict the word (in contrast to surprisal theory, which in principal assigns infinite

cost to words with a human subjective probability of 0 — whether this edge case is ever

relevant is part of the debate). Since differences in degree of low contextual probability are

not predicted to have much impact on processing cost (since the word will mostly fail to be

pre-activated), this view also predicts a linear rather than logarithmic relationship between

predictability and frequency, as supported by recent evidence (Brothers and Kuperberg,

2021) in contrast to Smith and Levy (2013).

As shown in Smith and Levy (2013), predictability effects can be temporally diffuse, and

the extent of this diffusion can depend on experimental modality (in that study, self-paced

reading vs. eye-tracking during reading). CDR can be used to localize predictability effects

in time more precisely than alternative methods, thereby improving inferences that can be

made about their influence on the response under e.g. an assumed linear vs. logarithmic

effect shape. In addition, as shown in Chapter 8, a deep neural relaxation of CDR can

jointly estimate both the timecourse and functional form of effects, potentially providing
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more direct insight into this question.

Furthermore, although to my knowledge differences in predictions about temporal dif-

fusion between these two theories have not been previously explored, I would argue that

surprisal theory and pre-activation theory not only make different predictions about the

functional form of the relationship between predictability and processing cost, but also

about how predictability effects will diffuse across time. In particular, under pre-activation

theory, predictability effects arise epiphenomenally from anticipatory partial execution of

the lexical and structural operations required to process a word in context. Predictabil-

ity or surprisal should therefore not carry a unique impulse response, but should simply

modulate the timing and extent of anticipatory processing. By contrast, under surprisal

theory, the primary work of sentence comprehension is a reallocation of resources between

competing interpretations of the sentence at each new word, with cost proportional to the

Kullback-Liebler divergence (Kullback and Leibler, 1951) of the conditional distribution

over strings given context before and after observing the word, plus possibly other costs

related to memory and integration (Levy et al., 2013); that is, the distributional update

itself contributes a unique cost (Aurnhammer and Frank, 2019). Although it is not pur-

sued further in this thesis, a possible future CDR-based test of these two theories could

be to compare models in which word predictability simply weights the impulse responses

to other measures of processing demand (e.g. measures of integration cost), as predicted

by pre-activation theory, against models in which word predictability has its own impulse

response, as predicted by surprisal theory.

In addition to these theoretical considerations, it is important to consider the possibility

that temporal diffusion of predictability effects may influence the results of psycholinguis-

tic data analysis in ways that may be unforeseen by existing theory. This is the case

even if predictability is not a quantity of direct interest, as evidenced by the sensitivity of

previously-reported memory retrieval effects to the assumed timecourse of predictability-

related covariates (discussed above with respect to Shain et al., 2016). CDR improves the
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Figure 2.1: Synthetic responses produced by convolving i.i.d. normal independent variables
with stationary convolution kernels. Note the undulating GAM smooth in blue, suggesting
non-stationarity that is not in fact present in the underlying generative process.

flexibility with which the statistical model can discover and control for temporally diffuse

processes, and should therefore both (1) shed light on theoretical questions that make di-

rect predictions about effect timecourses and (2) improve the robustness of analyses of other

kinds of psycholinguistic phenomena, which may be affected by temporal diffusion of word

predictability in unanticipated ways.

2.1.5 Other Temporal Phenomena

The present concern about temporal diffusion in psycholinguistic data complements recent

psycholinguistic interest in other kinds of temporal confounds, especially auto-correlation

and non-stationarity (Baayen et al., 2017, 2018).5 Baayen et al. (2018) demonstrate the

utility of including a first-order auto-regressive term in a GAM model to control for auto-

correlated error, while Baayen et al. (2017) relax the assumption of stationarity by aug-

menting GAM models with an independent variable C ∈ [0, 1] representing the proportion

5For related findings at high temporal resolution, see Cho et al. (2018).
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of the series completed at the current timestep. When a spline is fitted directly to C, the

obtained curve can be interpreted as an estimate of fluctuation in the base response rate

over time. And when a spline is fitted to the interaction between C and a predictor, the

obtained curve can be interpreted as an estimate of fluctuation in the influence of the pre-

dictor over time. Baayen et al. (2017) show that directly modeling non-stationarity can

have important impacts on both effect estimates and significance testing when applied to

time series generated by human subjects.

While auto-regressive/non-stationary GAM models can capture temporal effects, the

crucial point of divergence from this work is that they do not capture temporal diffusion.

They allow the influence of an independent variable to fluctuate with time, but continue to

assume independence of the response from preceding observations of the predictor(s). In

order to handle temporal diffusion, auto-regressive/non-stationary GAM models must still

make use of the problematic spillover technique discussed above.

CDR and non-stationary GAM models can therefore be seen to address distinct poten-

tial confounds in time series data: temporal diffusion of effects (CDR) vs. auto-correlation

and non-stationarity (GAM). All three confounds can be addressed relatively straightfor-

wardly by deploying CDR as a pre-process to GAM fitting, resulting in a two step analysis

in which the data are first convolved with CDR and then analyzed using GAM (see §3.6

for further elaboration on this general idea). Alternatively, a deep neural generalization of

CDR (Chapter 8) can jointly accommodate continuous-time temporal diffusion and non-

linear, interactive effects. However, note that convolutional structure can in some cases

explain apparent autocorrelation and non-stationarity. For example, the plot in Figure 2.1

shows a time series of synthetic responses generated by convolving i.i.d. normal independent

variables with gamma-shaped convolution kernels, as described in §4.1. The overall base

response rate in Figure 2.1 appears to fluctuate with time. This is supported by the undu-

lating GAM spline (shown in blue), suggesting non-stationarity. Responses are also clearly

auto-correlated, as shown by the higher frequency oscillations evident in the plot. However,
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the data were in fact generated by a strictly stationary convolutional process and are i.i.d.

normal conditional on the convolution. Apparent autocorrelation and non-stationarity are

artifactual. Thus, one possible source of apparent auto-correlation and non-stationarity in

time series data may be latent convolutional structure, and, in these cases, diffusion is the

core temporal confound that must be brought under statistical control.

2.2 Existing Deconvolutional Models

In order to infer the structure of an IRF g in eq. 1.1 from data, it is first necessary to

construct a solution space over which to perform inference. One way of doing so is through

discrete-time deconvolution, a class of methods which recast deconvolution as a special

case of linear regression by discretizing time into a finite number of equidistant steps and

then estimating timestep-specific parameters. Continuous-time IRFs can be inferred from

these discrete estimates if desired using various post-hoc smoothing techniques. One exam-

ple of this general approach, known as finite impulse response (FIR) models in the signal

processing literature (Neuvo et al., 1984; Saramaeki et al., 1993) and distributed lag (DL)

models in the time series literature (Koyck, 1954; Griliches, 1967), consists of including

regressors from previous timesteps. For simplicity, I will henceforth refer to such models as

FIR. A fixed-effects FIR model of order O with K predictors is a linear model of y ∈ RN

with design matrix X ∈ RN×K and parameters b ∈ R1+O·K , i.e. an intercept, plus one

coefficient for each of K predictors for each of O timesteps into the past:

yFIRO ∼ N


1N X

01×K · · · 0(O−1)×K

X[1···N−1,∗] · · · X[1···N−O+1,∗]

b, σ2

 (2.2)

The sequence of O coefficients for a given predictor defines a discrete-time IRF, and the

linear combination of predictors with b defines a temporal convolution operation (i.e. a

weighted sum along the time dimension).
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(b) Solution 1: Coerce the model

0 1∆ 2∆ 3∆ 4∆

0.4

0.6

0.8

1

Time

R
es

p
on

se

0.0 0.25 0.5 0.75 1.0
seconds

there ago time long Athere ago time long A

Spillover

0.0 0.25 0.5 0.75 1.0
seconds

there ago time long A

Interpolation

(c) Solution 2: Coerce the data

−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0.4

0.6

0.8

1

Time

R
es

p
on

se

0.0 0.25 0.5 0.75 1.0
seconds

there ago time long A

(d) Solution 3: CDR

Figure 2.2: The problem of variably spaced events for discrete-time convolution in a hy-
pothetical univariate FIR model on predictor word length (characters) with step duration
∆. Plots show hypothetical IRFs, with predictor values for each word shown in magenta in
timelines below each plot. The example sentence is typeset in reverse because the impulse
response describes the changing influence of words as they recede into the past. An order
5 FIR model cannot be used directly on a variably-spaced word sequence because there is
no value of ∆ that aligns the FIR coefficients with the stimulus events (2.2a). One solution
(2.2b) is to use a high-resolution IRF of order sp, where s is the length of the history window
in seconds and p is the inverse of the precision of the temporal measurement. Although this
model can be directly applied to variably-spaced events, it overparameterized to the point
of being unidentifiable. In this hypothetical training example where s = 1 and p = 100,
only 5/100 parameters have data. Another solution is to coerce the data into a format that
fits the assumptions of FIR (2.2c). Temporal variation can be deleted by “snapping” words
to coefficients in one-to-one alignment under the assumption of a fixed but unknown value
for ∆ (Spillover). This technique is distortionary if the stimuli are variably spaced and
their underlying contribution is a function of clock time rather than relative event index.
Alternatively, the predictor can be continuously interpolated between events, and the in-
terpolated signal is resampled at points (vertical dashed lines) that align with the discrete
IRF coefficients (Interpolation). This technique is distortionary for event-based predictors
that are not underlyingly continuous. CDR (2.2d) avoids both sparsity and distortion by
replacing the discrete IRF with a parametric continuous function of time (in this example,
f(x;β) = e−βx). A continuous IRF can be queried exactly at any point, has a parametric
complexity that is independent of the temporal span or resolution of the response kernel,
can be applied directly and without distortion to variably-spaced time series, and is agnostic
to temporal alignment between stimuli and response.
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Another prominent example of discrete time deconvolutional approaches is vector au-

toregressive (VAR) modeling (Sims, 1980). VAR generalizes FIR to predict the next time-

point (row) of X rather than a distinguished response y. VAR thus estimates parameters

B ∈ R(1+O·K)×K , and generates predictions YN×K through linear transformation:

YVARO ∼ N


1N

01×K · · · 0O×K

X[1···N−1,∗] · · · X[1···N−O,∗]

B, σ2

 (2.3)

Thus, unlike FIR, which predicts a distinguished response variable via convolution of the

history of predictor values, VAR predicts all K variables at the current timestep through

summed linear transformations of the O preceding timesteps. VAR fits can be used to

extract IRFs between any pair of variables in the model. Both of these techniques are

widely used in the fMRI literature (Friston et al., 1994; Harrison et al., 2003), and both can

be augmented with random effects (Beckmann et al., 2003; Gorrostieta et al., 2012). Since

VAR estimates IRFs between all pairs of variables in the data, it is perhaps unnecessarily

powerful for typical psycholinguistic studies that seek to model a distinguished response

variable. The remainder of this discussion of discrete-time deconvolution therefore focuses

on FIR.

As discussed in §1, in psycholinguistics, temporal diffusion is often addressed by adding

“spillover” predictors encoding predictor values from preceding events. From eq. 2.2 above,

it follows that this approach reduces to FIR modeling: a linear model containing O spillover

positions of K predictors is an FIR model of order O on those K predictors, and the set of O

coefficients for each predictor defines a discrete-time IRF. In practice, the term FIR tends

to be used in signal processing settings where the temporal distance between samples is

fixed, while the term spillover tend to be used in experimental settings where the temporal

distance between samples is ignored. While this distinction matters for the interpretation

of the discovered IRFs, since discrete-time IRFs only have a clock-time interpretation when

the offset between timesteps is fixed and known, it is immaterial for the definition of the
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statistical model itself. Even the GAM models with spillover used in e.g. Smith and Levy

(2013) can be thought of as a variant of FIR with an IRF kernel whose shape depends on

the values of the impulses at each timestep. Because of the identity (in the case of LME) or

close relationship (in the case of GAM) of spillover models to FIR models, the remainder

of this article will no longer distinguish the two, since the same objections apply regardless

of terminological choice.

Since additional spillover positions contribute additional parameters, rich spillover con-

trols can easily create such heavily parameterized models that realistically sized datasets

cannot support them, especially when used in the context of mixed-effects or spline regres-

sions that fit random effects or multi-dimensional smooths for each spillover position of

each predictor. For example, linear mixed effects models with by-subject random slopes

fitted using lme4 (Bates et al., 2015) on the Dundee corpus (Kennedy et al., 2003) fail to

converge with two or more spillover regressors.6 These models only contained spillover vari-

ants of four predictors, and the problem of overparameterization can be even more severe

in models that contain more control variables (e.g. Demberg and Keller, 2008, where LME

models contained up to thirteen predictors). In addition to concerns about overparame-

terization, spillover regressors can also introduce spurious multicollinearity to the extent

that predictors are autocorrelated, which can be problematic for model identification and

interpretation (Kutner et al., 2003).

As a consequence, analysts are forced in practice to trade off the richness of the time-

course model with other sources of complexity. For example, Smith and Levy (2013) use

GAM models containing rich spillover structures (up to three timesteps) but relatively poor

random effects (by-subject random intercept), while van Schijndel and Schuler (2015) use

6Models used log go-past durations as the dependent variable and included the predictors word length
(in characters), saccade length (in words), unigram log probability, and 5-gram surprisal, with probabilities
computed by KenLM language models (Heafield et al., 2013) trained on the Gigaword 3 corpus (Graff and
Cieri, 2003). Spillover positions from 0 (in situ) to n for each predictor were included for six models, one
for each of n ∈ {0, 1, 2, 3, 4, 5}, along with a random intercept by word and random slopes by subject for
each predictor (and each spillover position of each predictor). Outlier filtering was performed following van
Schijndel and Schuler (2015), yielding a total of 193,309 data points.
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LME models with rich random effects (by-subject and by-word random intercepts along

with by-subject random slopes for every predictor) but no spillover regressors.

However, perhaps more fundamental for language research than the aforementioned

computational problems is the inability of discrete-time deconvolutional models to repre-

sent variably spaced events. Figure 2.2a visually exemplifies this problem, and Figures 2.2b

and 2.2c exemplify possible solutions to it within a discrete-time framework, each of which

has undesirable properties. As shown in Figure 2.2a, an FIR model assumes a single fixed

interval ∆ between coefficients, and thus the discrete-time IRF cannot directly convolve

the properties of variably-spaced words because no such interval exists. This problem is

visualized by the lack of temporal alignment between the words in the example and the

FIR coefficients, and it can be addressed by coercing the model to match the data or the

data to match the model. To coerce the model to match the data, the interval ∆ can be

reduced to the level of precision of the temporal measurement (e.g. 1 millisecond) along

with a compensatory increase in the number of FIR coefficients per unit time (Figure 2.2b),

ensuring alignment to an FIR coefficient of all past events within some finite window. As

visualized in the figure, such an approach exaggerates the problem of overparameterization

and data sparsity to such a degree that I am unaware of any psycholinguistic studies that

attempt to use this technique (how many events in a psycholinguistic experiment are spaced

exactly 142ms apart?). To coerce the data to match the model, the stimuli can be (1) forced

into one-to-one alignment with the FIR coefficients under the simplifying assumption that

∆ is fixed but unknown or (2) interpolated and resampled at points that align with the

FIR coefficients (Figure 2.2c). The forced alignment approach is equivalent to spillover,

and it is distortionary for variably spaced events to the extent that the underlying contri-

bution of those events is a function of clock time rather than relative event index. The

interpolation approach has been used e.g. in fMRI modeling (Huth et al., 2016), and it is

distortionary to the extent that the stimuli represent transient events rather than samples
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from a continuously evolving feature space.7

CDR avoids both problems (overparameterization and distortion) by defining the IRF

as a continuous-time parametric kernel (Figure 2.2d). Because a continuous IRF has infi-

nite precision, it can be queried exactly at any point, thereby avoiding the trade-off faced

by discrete-time models between parsimony on the one hand and the temporal span and

resolution of the response kernel on the other. An additional advantage of continuous-time

deconvolution is the ability to model asynchronously measured data (see Chapter 1). Be-

cause continuous-time deconvolution is parsimonious, faithful to the underlying temporal

structure in the stimulus, and agnostic to temporal alignment between stimulus and re-

sponse, it is more appropriate than FIR (spillover) approaches for analyzing many kinds

of psycholinguistic data. Despite these conceptual advantages, continuous-time deconvolu-

tion is not currently used in psycholinguistics8 and is little used in cognitive science more

generally (aside from some previous neuroimaging studies that optimize the parameters

of gamma-shaped hemodynamic response functions, e.g. Kruggel and von Cramon, 1999;

Kruggel et al., 2000; Miezin et al., 2000; Lindquist and Wager, 2007; Lindquist et al., 2009).

In addition to the discrete-time frameworks discussed above, related continuous-time re-

gression models have also been proposed. Prior work has defined continuous-time extensions

of distributed lag models (Sims, 1971; Robinson, 1975, 1976; Bergstrom, 1984). However,

these approaches rely on Fourier analysis of the discretized covariate vector in order to

model the continuous IRF. Consequently, they impose two problematic restrictions: (1) the

covariates must be underlyingly continuous, and (2) discrete samples from the covariates

must be taken at a uniform time interval (Robinson, 1975). They are therefore even less

applicable to non-uniform discrete time series than their discrete-time analogs, which do

not impose continuity constraints, while also being subject to the same critiques of the

7As discussed in §3.1, interpolation of variably-spaced samples from predictors that are underlyingly
continuous over time (e.g. ambient noise level) is appropriate and in fact necessary to avoid distortion in
CDR’s event-based convolution procedure.

8Aside from the studies described in this thesis that apply CDR to psycholinguistic data.
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uniformity requirement.

Mathematically, the most closely related existing model to CDR is the the Hawkes

process model, also known as a self-exciting counting process model (Hawkes, 1971). Hawkes

process models are used to analyze stochastic point processes in which the occurrence of

an event locally increases the instantaneous probability of other events occurring, and thus

the intensity function of the process is self-exciting in continuous time. Formally, a Hawkes

process generates the intensity λ(t) given (possibly non-stationary) base intensity µ(t) and

event times T via convolution with the triggering function g(t) (analagous to an IRF):

λ(t) = µ(t) +
∑

τ∈T,τ<t
g(t− τ) (2.4)

Commonly, g is chosen to be the two parameter exponential function g(t) = αeβt, α, β > 0,

enforcing exponential decay of the self-excitation function with amplitude α and decay rate

β,9 and the intensity λ(t) is taken to be the parameter of a Poisson distribution describ-

ing the instantaneous concentration of events given the history, or equivalently, the rate

parameter of an exponential distribution describing the expected waiting time until the

next event given the history (Cooper, 2005). Parameters µ, α, and β are usually estimated

from data using non-linear numerical optimization (Ozaki, 1979). This framework has been

generalized in many ways, including extension to multivariate event data (i.e. simultaneous

modeling of multiple event streams; Embrechts et al., 2011), extension to marked processes

that contain regressors in addition to timestamps (Lapham, 2014), and the use of recurrent

neural network intensity functions (Mei and Eisner, 2017).

Although both CDR and Hawkes processes involve a continuous parametric convolution

over the time dimension, a fundamental difference between them is that CDR seeks to model

a designated response variable while Hawkes processes seek to model the future temporal

9Other kernel types, including power law kernels h(t) = α
(t+β)η+1 (Lapham, 2014), non-parametric basis

kernels (Zhou et al., 2013), and self-regulating neural network kernels (Mei and Eisner, 2017), are also widely
used.
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realization of the sequence of events. To my knowledge, no existing formulation of Hawkes

process models can be used to address the temporal diffusion problem targeted in this

study.
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Part II

Continuous-Time Deconvolutional

Regression
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Chapter 3

CDR Model Definition and Implementation

The mathematical definition of CDR is given in §3.1, with a worked step-through of the

equations in §3.1.1. §3.2, §3.3, §3.4, and §3.5 exposit additional mathematical properties of

the model.

3.1 CDR Model

The CDR model assumes the following quantities as input:

• X ∈ N: Number of predictor observations

• Y ∈ N: Number of response observations

• K ∈ N: Number of predictors

• R ∈ N: Number of impulse response parameters

• J ∈ N: Number of unique time series1

• X ∈ RX×K : Design matrix of X predictor observations of K dimensions each

• Z ∈ N: Number of random grouping factor levels2

• Z ∈ {0, 1}Y×Z : Boolean matrix indicating random grouping factor levels associated

with each response observation

• y ∈ RY : Vector of Y response observations

1J � X,Y because each time series indexed by {1, . . . , J} contains many predictor and response obser-
vations.

2The sum total of all levels of each random grouping factor in the model, e.g. the number of subjects
plus the number of items.
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Name Type Description

D
im

en
si

o
n

s

X N Number of predictor observations
Y N Number of response observations
Z N Number of random grouping factor levels
K N Number of predictors
R N Number of impulse response parameters
J N Number of unique time series

D
at

a

X RX×K X predictor observations
y RY Y response observations
Z {0, 1}Y×Z Random effects indicator
t RX Timestamps of observations in X
t′ RY Timestamps of observations in y
c {1, 2, . . . , J}X Time series IDs of observations in X
d {1, 2, . . . , J}Y Time series IDs of observations in y

P
ar

am
et

er
s

µ R Fixed intercept
m RZ Random intercepts
u RK Fixed coefficients
U RZ×K Random coefficients
vk RR Fixed IRF parameters for the kth predictor
Vk RZ×R Random IRF parameters for the kth predictor
σ2 R+ Variance

M
o
d

el

gk(t; θ) R+ → R IRF kernel for the kth predictor, function of time t given parameters θ
m′ RY Fixed + random intercepts
U′ RY×K Fixed + random coefficients
V′k RY×R Fixed + random IRF parameters for predictor k
F {0, 1}Y×X Convolution mask

Gk RY×X Convolution matrix for the kth predictor
X′ RY×X Convolved design matrix

Table 3.1: Summary of variables in CDR model definition
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• t ∈ RX : Vector of timestamps associated with each observation in X

• t′ ∈ RY : Vectors of timestamps associated with each observation in y

• c ∈ {1, 2, . . . , J}X : Vector of time series IDs associated with each observation in X

• d ∈ {1, 2, . . . , J}Y : Vectors of time series IDs associated with each observation in y

• gk(t; θ) ∈ R+ → R for k ∈ {1, 2, . . . ,K}: Parametric IRF kernels specifying response

at time t given parameters θ, one for each of K predictors

Following e.g. lme4 (Bates et al., 2015), I use random grouping factor to refer to variables

that capture categorical random variation in a model (e.g. participant or item) and random

grouping factor level to refer to individual values of a random grouping factor (e.g. the value

participant A of the random grouping factor participant). Furthermore, by time series

I denote a single unique sequence of observations of predictors and responses. A single

dataset may contain multiple time series. For example, a psycholinguistic experiment may

contain data from several participants, each of whom read several texts. Each participant-

text pair could be treated as a unique time series. Different time series are considered

statistically independent and are indexed by unique time series IDs (represented in c and d).

Note that X (number of predictor observations) and Y (number of response observations)

can differ in a CDR model because X will be forced into a conformable dimensionality

with y via convolution over time (see X′ below). This property permits CDR analysis of

predictor/response streams with different acquisition times.

CDR seeks to estimate the following quantities, which mediate between X and y:

• a scalar intercept µ ∈ R

• a vector m ∈ RZ of Z random intercepts

• a vector u ∈ RK of K fixed coefficients3

3Throughout this thesis I use the term coefficients to refer to what are often called slopes in linear models.
This is to avoid falsely implying that the coefficients represent straight-line functions of the predictors, when
in fact they are applied non-linearly to the predictors via the impulse response. Alternatively, the coefficients
can be construed as slopes on the convolved predictors X′, as shown in eq. 3.7.
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• a matrix U ∈ RZ×K of ZK random coefficients, i.e. random estimates for each of K

predictors for each of Z random effects levels

• K vectors vk ∈ RR of R fixed IRF kernel parameters for K fixed predictors

• K matrices Vk ∈ RZ×R of ZR random IRF kernel parameters, i.e. random estimates

for each of K predictors for each of R IRF parameters for each of Z random effects

levels

• a scalar variance σ2 ∈ R+ of the response

Random parameters m, U, and Vk are constrained to be zero-centered within each random

grouping factor.4

A fixed-effects CDR model therefore contains 2+K+KR parameters: one intercept, K

coefficients (one for each predictor), KR IRF parameters (R parameters for each predictor),

and one variance of the response. Mixed-effects CDR models can also include random

variation in the intercept, coefficients, and/or IRF parameters. This yields at most 1+(Z+

1)(1 +K +KR) estimates for a mixed effects model with Z total random grouping factor

levels (for example, the number of subjects plus items). Sub-maximal numbers of estimates

can arise by forcing random effects components to zero. For example, zeroing out vk and

Vk eliminates random coefficients and IRF parameters for the kth predictor.

To support mixed modeling, the fixed and random effects must first be combined by

adding fixed effects with their random offsets using the indicator matrix Z, resulting in

intercept vector m′ ∈ RY , coefficient matrix U′ ∈ RY×K and IRF parameter matrices

4In practice, I also assume normally distributed random effects, either implicitly (via L2 regularization)
or explicitly (via variational priors and posteriors).
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V′k ∈ RY×R for k ∈ {1, 2, . . . ,K}:

m′
def
=µ+ Z m (3.1)

U′
def
=1u> + Z U (3.2)

V′k
def
=1v>k + Z Vk (3.3)

To support convolution, let F ∈ {0, 1}Y×X be a mask that admits only those observations

in X that precede each y[y] in the same time series, for 1 ≤ x ≤ X, 1 ≤ y ≤ Y :

F[y,x]
def
=


1 (c[x] = d[y]) and (t[x] ≤ t′[y])

0 otherwise

(3.4)

K sparse convolution matrices Gk ∈ RY×X for k ∈ {1, 2, . . . ,K} are defined as follows:

Gk
def
= gk

(
t′1> − 1t>; V′k

)
� F (3.5)

The convolution that yields the design matrix of convolved predictors X′ ∈ RY×K is then

defined using a product of the convolution matrices and the design matrix:

X′[∗,k]
def
= Gk X[∗,k] (3.6)

The full model mean is the sum of (1) the intercepts and (2) the sum-product of the

convolved predictors with the coefficient parameters:

y ∼ N
(
m′ + (X′ �U′) 1, σ2

)
(3.7)

A summary table of the variable definitions above is provided in Table 3.1, and a step-

through example of the CDR equations is provided in §3.1.1.
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Note that this is an event-based implementation of convolution that is only exact when

the predictors fully describe discrete impulse signals. Exact convolution of samples from

continuous signals is generally not possible because the signal is generally not analytically

integrable. For continuous signals, the CDR procedure above defines a Riemann sum ap-

proximation of the integral as long as (1) the predictor is sampled at a fixed frequency or

(2) the predictor is interpolated at a fixed frequency between variably-spaced samples.

3.1.1 CDR Model: A Worked Example

Consider a model containing two predictors p1 and p2 and two random effects levels s1 and

s2. Assume the following 6 rows for each of X (predictors), t (predictor timestamps), and

c (predictor series IDs):

X =

p1 p2



5 0

−1 3

6 1

2 2

0 1

−2 −1

, t =





0

2

3

0

1

4

, c =





1

1

1

2

2

2
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Assume the following four rows for each of Z (random effects indicator), t′ (response times-

tamps), and d (response series IDs):

Z =

s1 s2


1 0

1 0

0 1

0 1

, t′ =




1

4

2

3

, d =




1

1

2

2

,

Assume a Gaussian IRF kernel with scalar location and scale parameters w1, w2:

g1(x;w1, w2) = g2(x;w1, w2) = e
−(x−w1)

2

w2

Assume the following model parameters µ, m, u, U, v1, v2, V1, V2, and σ2. Note that

random effects m, U, V1, and V2 are zero-centered:

µ = 1.2, m = s1

s2

 −0.2

0.2

, u = p1

p2

 0.1

0.5

, U = s1

s2

p1 p2 −0.3 0.7

0.3 −0.7

v1 = w1

w2

p1 0.8

1.7

, v2 = w1

w2

p2 1.1

0.5

, V1 = s1

s2

w1 w2 −0.2 0.1

0.2 −0.1

, V2 = s1

s2

w1 w2 0.3 0.4

−0.3 −0.4

σ2 = 1.3

The CDR equations are used to generate estimates for the four elements of y using the

inputs and parameters. The vector m′ = µ+ Z m contains intercepts for each element of y
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and is computed as follows:

m′ =

µ︷︸︸︷
1.3 +

Z︷ ︸︸ ︷
s1 s2


1 0

1 0

0 1

0 1

m︷ ︸︸ ︷ −0.2

0.2

=

µ︷︸︸︷
1.3 +

Zm︷ ︸︸ ︷


−0.2

−0.2

0.2

0.2

=

µ+Zm︷ ︸︸ ︷


1.1

1.1

1.5

1.5
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The matrix U′ = 1u> + Z U contains coefficients for both predictors for each element of y

and is computed as follows:

U′ =

1︷︸︸︷


1

1

1

1

u>︷ ︸︸ ︷[ ]
0.1 0.5 +

Z︷ ︸︸ ︷
s1 s2


1 0

1 0

0 1

0 1

U︷ ︸︸ ︷
p1 p2 −0.3 0.7

0.3 −0.7

=

1u>︷ ︸︸ ︷


0.1 0.5

0.1 0.5

0.1 0.5

0.1 0.5

+

ZU︷ ︸︸ ︷


−0.3 0.7

−0.3 0.7

0.3 −0.7

0.3 −0.7

=

1u>+ZU︷ ︸︸ ︷


−0.2 1.2

−0.2 1.2

0.4 −0.2

0.4 −0.2
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The matrices V′1 = 1v>1 +Z V1 and V′2 = 1v>2 +Z V2 contain IRF parameters for responses

to p1 and p2, respectively, for each of the four elements of y. They are computed as follows:

V1 =

1︷︸︸︷


1

1

1

1

v>1︷ ︸︸ ︷[ ]
0.8 1.7 +

Z︷ ︸︸ ︷
s1 s2


1 0

1 0

0 1

0 1

V1︷ ︸︸ ︷
p1 p2 −0.2 0.1

0.2 −0.1

=

1v>1︷ ︸︸ ︷


0.8 1.7

0.8 1.7

0.8 1.7

0.8 1.7

+

ZV1︷ ︸︸ ︷


−0.2 0.1

−0.2 0.1

0.2 −0.1

0.2 −0.1

=

1v>1 +ZV1︷ ︸︸ ︷


0.6 1.8

0.6 1.8

1.0 1.6

1.0 1.6
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V′2 =

1︷︸︸︷


1

1

1

1

v>2︷ ︸︸ ︷[ ]
1.1 0.5 +

Z︷ ︸︸ ︷
s1 s2


1 0

1 0

0 1

0 1

V2︷ ︸︸ ︷
p1 p2 0.3 0.4

−0.3 −0.4

=

1v>2︷ ︸︸ ︷


1.1 0.5

1.1 0.5

1.1 0.5

1.1 0.5

+

ZV2︷ ︸︸ ︷


0.3 0.4

0.3 0.4

−0.3 −0.4

−0.3 −0.4

=

1v>2 +ZV2︷ ︸︸ ︷


1.4 0.9

1.4 0.9

0.8 0.1

0.8 0.1

The mask matrix F[y,x]
def
=


1 (c[x] = d[y]) and (t[x] ≤ t′[y])

0 otherwise

indicates predictor observa-

tions that precede each element of y in the same time series. Timestamp vectors t, t′ and
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series ID vectors c, d are shown on the top and left axes for expository purposes.

F =

0 2 3 0 1 4 }t

1 1 1 2 2 2 }c



1 1 1 0 0 0 0 0

4 1 1 1 1 0 0 0

2 2 0 0 0 1 1 0

3︸︷︷︸
t′

2︸︷︷︸
d

0 0 0 1 1 0

50



To compute convolution matrices G1, G2, an array t′1> − 1t is first computed, containing

distance in time of predictors from responses:

t′1> − 1t =

t′︷︸︸︷


1

4

2

3

1>︷ ︸︸ ︷[ ]
1 1 1 1 1 1 −

1︷︸︸︷


1

1

1

1

t>︷ ︸︸ ︷[ ]
0 2 3 0 1 4

=

t′ 1>︷ ︸︸ ︷


1 1 1 1 1 1

4 4 4 4 4 4

2 2 2 2 2 2

3 3 3 3 3 3

−

1t>︷ ︸︸ ︷


0 2 3 0 1 4

0 2 3 0 1 4

0 2 3 0 1 4

0 2 3 0 1 4

=

t′ 1>−1t>︷ ︸︸ ︷


1 −1 −2 1 0 −3

4 2 1 4 3 0

2 0 −1 2 1 −2

3 1 0 3 2 −1

These distances are supplied as inputs to the impulse response functions g1, g2, and irrele-

vant cells (i.e. cells from the future or cells from other time series) are masked using F. The

resulting convolution matrices G1 = g1(t′ 1>−1t>; V′1)� F, G2 = g2(t′ 1>−1t>; V′2)� F

contain the convolution weights to apply to the elements of X in order to generate y. They

are computed as follows, where gk is parameterized row-wise by V′k and applied elementwise
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to t′ 1> − 1t>:

G1 = g1



t′ 1>−1t>︷ ︸︸ ︷


1 −1 −2 1 0 −3

4 2 1 4 3 0

2 0 −1 2 1 −2

3 1 0 3 2 −1

;

V′1︷ ︸︸ ︷


0.6 1.8

0.6 1.8

1.0 1.6

1.0 1.6


�

F︷ ︸︸ ︷


1 0 0 0 0 0

1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 1 1 0

=

g1(t′ 1>−1t>;V′1)︷ ︸︸ ︷


0.91 0.24 0.02 0.91 0.82 0.00

0.00 0.34 0.91 0.00 0.04 0.00

0.54 0.54 0.08 0.54 1.00 0.00

0.08 1.00 0.54 0.08 0.54 0.08

�

F︷ ︸︸ ︷


1 0 0 0 0 0

1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 1 1 0

=

g1(t′ 1>−1t>;V′1)�F︷ ︸︸ ︷


0.91 0.00 0.00 0.00 0.00 0.00

0.00 0.34 0.91 0.00 0.00 0.00

0.00 0.00 0.00 0.54 1.00 0.00

0.00 0.00 0.00 0.08 0.54 0.00
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G2 = g2



t′ 1>−1t>︷ ︸︸ ︷


1 −1 −2 1 0 −3

4 2 1 4 3 0

2 0 −1 2 1 −2

3 1 0 3 2 −1

;

V′2︷ ︸︸ ︷


1.4 0.9

1.4 0.9

0.8 0.1

0.8 0.1


�

F︷ ︸︸ ︷


1 0 0 0 0 0

1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 1 1 0

=

g2(t′ 1>−1t>;V′2)︷ ︸︸ ︷


0.84 0.00 0.00 0.84 0.11 0.00

0.00 0.67 0.84 0.00 0.06 0.11

0.00 0.00 0.00 0.00 0.67 0.00

0.00 0.67 0.00 0.00 0.00 0.00

�

F︷ ︸︸ ︷


1 0 0 0 0 0

1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 1 1 0

=

g2(t′ 1>−1t>;V′2)�F︷ ︸︸ ︷


0.84 0.00 0.00 0.00 0.00 0.00

0.00 0.67 0.84 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.67 0.00

0.00 0.00 0.00 0.00 0.00 0.00
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The two columns of the convolved predictor matrix X′ = G2 X[∗,2] are computed by pre-

multiplying each column with its corresponding convolution matrix:

X′[∗,1] =

G1︷ ︸︸ ︷


0.91 0.00 0.00 0.00 0.00 0.00

0.00 0.34 0.91 0.00 0.00 0.00

0.00 0.00 0.00 0.54 1.00 0.00

0.00 0.00 0.00 0.08 0.54 0.00

X[∗,1]︷ ︸︸ ︷
p1



5

−1

6

2

0

−2

=

G1 X[∗,1]︷ ︸︸ ︷


4.55

5.15

1.08

0.16
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X′[∗,2] =

G2︷ ︸︸ ︷


0.84 0.00 0.00 0.00 0.00 0.00

0.00 0.67 0.84 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.67 0.00

0.00 0.00 0.00 0.00 0.00 0.00

X[∗,2]︷ ︸︸ ︷
p1



0

3

1

2

1

−1

=

G2 X[∗,2]︷ ︸︸ ︷


0.00

2.85

0.67

0.00

X′ =




4.55 0.00

5.15 2.85

1.08 0.67

0.16 0.00
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The expected response ŷ = m′ + (X′ �U′)1 is computed by rescaling X′ by the coefficient

matrix U′, summing across predictors, and shifting by the intercept m′, as shown:

ŷ =

m′︷ ︸︸ ︷


1.1

1.1

1.5

1.5

+



X′︷ ︸︸ ︷


4.55 0.00

5.15 2.85

1.08 0.67

0.16 0.00

�

U′︷ ︸︸ ︷


−0.2 1.2

−0.2 1.2

0.4 −0.2

0.4 −0.2



1︷︸︸︷ 1
1

=

m′︷ ︸︸ ︷


1.1

1.1

1.5

1.5

+

X′�U′︷ ︸︸ ︷


−0.91 0.00

−1.03 3.42

0.43 −0.13

0.06 0.00

1︷︸︸︷ 1
1

=

m′︷ ︸︸ ︷


1.1

1.1

1.5

1.5

+

(X′�U′)1︷ ︸︸ ︷


−0.91

2.39

0.30

0.06

=

m′+(X′�U′)1︷ ︸︸ ︷


0.19

3.49

1.80

1.56
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3.2 Effect Estimates in CDR

Many scientific applications of linear modeling are interested in testing a null hypothesis

about the scalar-valued effect estimate obtained for a predictor (e.g. that it is equal to 0).

Because CDR models estimate continuous functions of time rather than scalars (as in linear

regression), the estimated IRF must be distilled into a scalar in order to yield a comparable

notion. Here, CDR effect estimates are defined by integrating the IRFs, since the integral

describes the total expected influence on the response from observing a unit impulse of

each predictor. In particular, the unscaled and scaled fixed effect estimates g, g′ ∈ RK are

defined as follows, where scaling is performed using the coefficient vector u (§3.1):

g[k]
def
=

∫ ∞
0

gk (t; vk) dt (3.8)

g′
def
= g � u (3.9)

(3.10)

In mixed-effects CDR models with random impulse response parameters, the IRF shape

— and therefore the integral of the IRF — can vary between levels of the random grouping

factor. As a result, zero-centering the random coefficients U within each grouping factor

is insufficient to guarantee zero-centered random effect estimates. For example, in a 2-

level mixed univariate CDR model with fixed effect sizes g′ =

[
1 1

]>
, random coefficients

U =

[
−1 1

]>
, and unscaled random effect estimates (IRF integrals) H =

[
1 10

]>
, U

has mean 0, but the random effect estimate vector H′ = H �U − 1g′> =

[
−2 9

]>
has

mean 3.5, yielding a biased population level effect estimate.
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To overcome this, IRFs gk are constrained to have a unit integral over the positive real

line:

1 =

∫ ∞
0

gk(t; θ) dt; k ∈ {1, 2, . . . ,K}, θ ∈ RR (3.11)

Under this constraint, zero-centered coefficients are guaranteed to yield zero-centered effect

estimates, and the population-level (fixed) effect estimates are unbiased.5

An important implementational consideration for finite training data is that the model

will not have empirical support over the positive infinite real line, and thus the infinite

integral involves some degree of extrapolation. To ensure that effect estimates have strong

empirical support, in practice the integral in eq. 3.9 is upper bounded at the 75th percentile

of temporal offsets seen in training. This seemed to be a reasonable default that concentrates

the effect estimate on empirically well-attested regions of the support of the IRF. However,

particular research questions may motivate the use of other kinds of bounds (e.g. if the

research domain imposes a principled constraint on the duration of interest for the IRF).

3.3 The Deconvolutional Intercept

In linear regression, the intercept is a bias term implemented by fitting a coefficient to a

vector of ones, one for each data point. The intercept term estimates the base response of

the system when the other predictors are equal to 0. Because CDR contains a linear model

on the convolved predictors (eq. 3.7), it is just as important to include an intercept term in

CDR models as in linear ones. However, in a deconvolutional setting, it is also possible that

the response is partially described by the timing of stimuli alone, independently of their

properties. This possibility can be brought under control by additionally convolving the

intercept with an estimated impulse response. Analagously to a linear intercept term, this

5In models without random IRF parameters, the IRF integrals are identical across levels of the random
grouping factor, and effect estimates are thus unbiased with or without normalization. Normalizing can still
have numerical advantages since it factors effect size and shape, so we apply normalization to all models
reported here, regardless of whether they contain random IRF parameters.
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convolved intercept estimates the base response of the system when the other predictors are

equal to 0, but unlike the linear intercept, the convolved intercept is sensitive to stimulus

timing. The estimate for the deconvolutional intercept is therefore the expected change in

the response over time from observing an event, regardless of the properties of that event.

I refer to this deconvolutional intercept as rate (see also e.g. Brennan et al., 2016) and

consider it to be an essential control to include in CDR models. Without it, variance in the

response due to event timing must be captured by other components in the model, which

is potentially problematic for interpretation and hypothesis testing.

Depending on the problem definition, rate effects may have a theoretical interpretation.

For example, as argued in §4.2, a negative rate estimate in reading data can be seen as an

inertia effect, since the negative rate contributions of preceding words compound to suppress

reading times on the current word as a function of their recency. In other words, fast reading

in the recent past will engender fast reading now, a possibility which rate estimates allow

the model to account for.

Note that rate can only be estimated in a continuous-time deconvolutional setting be-

cause variation over time in the rate of events is necessary to identify it. In an FIR model,

the rate predictor is equal to 1 at every timestep, rendering it identical to the intercept. The

ability to detect rate effects in variably-spaced time series is a major advantage of CDR.

3.4 Scale and Shift in CDR Models

Linear models are invariant to transformations that rescale and/or shift the design matrix,

in that for a linear model f with intercept p, slopes q, predictors X, scale vector r, and
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shift vector s, the following identity holds:

f
(
X diag(r) + 1s>; p,q

)
= p+

(
X diag(r) + 1s>

)
q

= p+ s>q + X diag(r)q

= f
(
X; p+ s>q, diag(r)q

)
(3.12)

In other words, a linear model of shifted/rescaled X is equivalent to a shifted/rescaled

linear model of X. This result entails that (non-interacted) predictors can be shifted and

rescaled (e.g. standardized) prior to fitting without altering the solution, which can help

with numerical optimization of complex linear models.

In a non-linear optimization setting such as that required for CDR, normalization can

be helpful for accelerating convergence (Ioffe and Szegedy, 2015; Salimans and Kingma,

2016; Ba et al., 2016), and this section therefore explores the impact of scale and shift of

the inputs to CDR models. Invariance under rescaling follows trivially from eq. 3.6. It also

follows from eq. 3.6 that CDR is not invariant under additive shift s:

Gk (X[∗,k] + 1s[k]) = Gk X[∗,k] + Gk 1s[k] (3.13)

As shown, the shift scalar s[k] is also convolved with Gk, resulting in an additional term

Gk 1s[k] ∈ RN which cannot be absorbed by the intercept because its value differs for each

data point (unlike s>q in eq. 3.12, whose value is identical for all elements of X). However,

note that by convolving a matrix of ones, Gk 1s[k] implicitly defines a deconvolutional inter-

cept term with IRF gk and scale u[k]s[k]. In other words, shifting K predictors introduces

K deconvolutional intercepts, each with IRF shape and scale tied to the shape and scale

estimates of the predictors themselves. Since these deconvolutional intercepts are summed

together in eq. 3.7 and convolution obeys the distributive property, they together define a
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new impulse response g0 for the deconvolutional intercept:

g0(t) =
K∑
k=1

u[k]s[k]gk(t) (3.14)

Since g0(t) = 0 can only be guaranteed if s = 0, the model is not invariant under

shift. However, in models with an explicit rate predictor as recommended in §3.3, g0 simply

modulates the IRF estimate for rate. Under the conventional assumption that the intercept

(rate predictor) is the first column of the design matrix X, the implicit kernel g′1 for the

deconvolutional intercept in models with shift can be computed as:

g′1(t) = g0(t) + g1(t) (3.15)

The deconvolutional intercept thus does “absorb” shift in a limited sense. It must nonethe-

less be kept in mind that unless identity is enforced between g1,...,K , the estimated shape of

g′1 will consist of a sum of response kernels and can therefore fall outside the solution space

defined by the parametric IRF kernel assigned to rate.

3.5 Multicollinearity

The formulation in eq. 3.7 is simply a linear model on the convolved design matrix X′.

Therefore, the primary difference between linear and CDR models is that CDR additionally

infers the parameters that generate X′ jointly with the model intercept and coefficients.

Since CDR depends internally on linear combination to generate its outputs, it is vul-

nerable to confounds from multicollinearity (correlated predictors) in much the same way

that linear models are. In linear models, multicollinearity increases uncertainty about how

to allocate covariation between predictors and response, since the predictors themselves

covary. In the extreme case of perfect multicollinearity (i.e. one or more predictors are an
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exact linear combination of one or more other predictors), the model has no solution (Neter

et al., 1989).

Multicollinearity in CDR works in much the same way, with the added complexity

that CDR models also have a temporal dimension which may allow the fitting procedure

to discover real characteristics of the global impulse response structure while struggling

proportionally to the degree of multicollinearity to decompose that structure into predictor-

specific IRFs. To understand this, note that the expected response t seconds after stimulus

presentation is a weighted sum of the IRFs at t, with weights provided by the predictor

values of the stimulus. When multicollinearity is low, the expected overall response can

vary widely from one stimulus to another, since the IRFs are reweighted at each stimulus

by roughly orthogonal predictor values. This variation in expected overall response provides

clues to the system as to the magnitude, direction, and temporal shape of the individual

response to each predictor. As multicollinearity increases, the expected overall response

increasingly converges to a single shape which is shared across all stimuli (albeit scaled by

the stimulus magnitude). In this setting, the model should still be able to correctly recover

the global response characteristics, but may decompose it into predictor-specific responses

that increasingly deviate from the true data generating model. In the extreme case of perfect

multicollinearity, the expected response is identical for each stimulus, and the model will

construct IRFs whose summation approximates the true global response profile but whose

attribution of IRF components to predictors is arbitrary.

Empirical results (§4.1.4) indicate that CDR models are quite robust to multicollinearity.

Nonetheless, models fitted to highly collinear data should be interpreted with caution, and

perfectly collinear data should be avoided altogether. As in linear models, multicollinearity

can be avoided by orthogonalizing predictors in advance (e.g. via principal components

analysis). Empirical evaluation of orthogonalization procedures in the CDR setting is left

to future work, and no orthogonalization is used in any of the analyses presented here.
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3.6 Hypothesis Testing

The ultimate scientific purpose of most statistical models is to test a claim about nature.

Hypothesis testing is challenging in a CDR context for two reasons. First, CDR currently

does not have analytical estimators for standard errors of the model parameters. As a

result, exact null hypothesis significance tests cannot be performed on the basis of a single

model. Single-model tests are nonetheless also problematic in a linear regression context

when predictors are collinear (Neter et al., 1989), a pervasive issue in psycholinguistics that

has motivated a shift toward ablative tests based on model comparison (Frank and Bod,

2011). Second, reliance on non-linear stochastic optimization introduces estimation noise

through the possibility of imperfect convergence to an optimum or convergence to a non-

global optimum. As a result, training likelihood cannot be guaranteed to be maximized,

which can result in degenerate outcomes for in-sample ablative tests (e.g. the ablated model

can have better likelihood than the full model).

For this reason, two tests that are commonly used for linear models may be unreliable for

CDR. First, tests based on credible intervals may be unreliable because the credible intervals

produced by (variational) Bayesian CDR reflect the local neighborhood of the discovered

solution (optimum), which may not account for the existence of more distant optima.6

Credible intervals tests in CDR are therefore anticonservative. Indeed, the analyses reported

below show that CDR-estimated credible intervals tend to be very tight. Second, likelihood

ratio testing (LRT) may be unreliable because the test statistic is a function of the maximum

likelihood estimates, and CDR likelihood cannot be guaranteed to be maximized. Instead,

this thesis considers two types of hypothesis test for CDR models: (1) a direct test by

bootstrap comparison of model fit to out-of-sample data, and (2) a 2-step test in which

CDR is used first to estimate a data-driven convolution X′ of the design matrix X and then

existing statistical models (e.g. OLS, LME, GAM) are fitted to X′ and used to perform the

6Maximum likelihood CDR models do not estimate uncertainty, and therefore CDR does not support
(frequentist) confidence intervals.
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test.

To perform a direct test, training and evaluation sets must be created, either by running

two separate experiments or by partitioning the data from a single experiment.7 Two CDR

models are fitted to the training set, one with a fixed effect for the variable to be tested

(full model), and one without one (ablated model). Out-of-sample error vectors are then

generated by predicting from each model on the evaluation set, and an aggregate test

statistic (e.g. absolute difference in mean squared error) is computed over the two vectors.

To perform the test (a paired permutation test), an empirical distribution is created for the

test statistic: for n iterations, the by-item errors from each model are randomly swapped

pairwise to generate two new error vectors, and a new test statistic over the resampled errors

is computed and stored. The test rejects the null hypothesis at level α if the observed test

statistic is greater than (1− α)× 100% of the resampled test statistics.

To perform a 2-step test, a single CDR model containing all fixed effects of interest is

fitted to the data, and the predictors are convolved using the estimated IRFs. Standard

statistical models (e.g. OLS, LME, GAM) are then fitted to the convolved predictors and

used to perform any of the tests that they support (e.g. LRT). Note that to perform an

ablative test like LRT in a 2-step setting, the ablation is only applied at the second step

(e.g. the LME stage). If ablation is also applied at the CDR stage, then the predictors in

the full and ablated models are not necessarily the same, invalidating the test.

Both tests potentially suffer from non-convexity, since they are both conditional on

possibly sub-optimal IRF estimates. Nonetheless, I offer the following arguments in defense

of using CDR for hypothesis testing. First, the synthetic experiments reported in §4.1 show

a strong tendency for CDR to closely recover the true data-generating model, even under

adverse training conditions like variably spaced events, multicollinearity, and ill-fitting IRF

7When partitioning and/or filtering outliers prior to CDR fitting, it is important to keep in mind that
partitioning and outlier filtering should only be performed on the response vector. Partitioning/filtering
the design matrix is equivalent to assuming that the removed events did not take place, which can distort
the IRF estimates. The CDR software library described in §3.7 provides utilities for data partitioning and
filtering, which automatically apply only to the response data.
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kernels. There is thus empirical reason to believe that convergence to a bad optimum is

not a serious problem in practice. Second, the assumption that the models fall within a

tolerance of the global optimum (i.e. are “good enough”) also underlies ablative tests in

popular linear regression libraries like lme4, which use numerical optimization and define a

tolerance-based stopping criterion. Third, in pursuit of understanding complex non-linear

phenomena like human language comprehension, CDR may permit discovery of previously

unknown patterns precisely by relaxing the strict linearity and independence assumptions

that support linear models’ convenient statistical and mathematical properties. Optimality

guarantees are of little value if the underlying generative process lies far outside the model’s

solution space.

The direct test potentially suffers more than the 2-step test from the issue of non-

convexity, since in the 2-step test the coefficients benefit from convergence guarantees at

the second step (e.g. LME) and the IRFs do not vary with ablation. However, the 2-step test

potentially suffers more than the direct test from multicollinearity, since it cannot adjust IRF

shapes in the ablated model that might have been influenced by multicollinear predictors in

the full model. And although the 2-step procedure alone can guarantee maximum training

likelihood conditional on the fitted IRF, this may not be of critical importance because

the direct test does not implicitly require that training likelihood is maximized, since it is

based on out-of-sample error rather than asymptotic distributional guarantees (cf. LRT).

Indeed, because of the possibility of overfitting, much research in statistics and machine

learning has been dedicated to the study of regularization techniques and stopping criteria

that avoid minimizing training error in pursuit of minimizing generalization error (Yao

et al., 2007; Raskutti et al., 2014; Srivastava et al., 2014), and out-of-sample bootstrap

model comparison is one of the most widely used statistical tests for non-convex model

comparison in machine learning (Demšar, 2006). Refocusing on out-of-sample rather than

in-sample performance has the added benefit of building external model validity directly into

the statistical test, which is potentially timely in light of growing concern over the replication
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Synthetic Experimental
Inference Median 25% 75% Median 25% 75%

MLE 1.000 1.000 1.001 1.002 0.997 1.011
BBVI.imp 1.000 1.000 1.000 1.002 0.997 1.014

BBVI 1.010 1.002 1.076 1.003 0.973 1.027

Table 3.2: Distribution of fixed effects estimates of LME models fitted to CDR-convolved
synthetic and human subjects (Experimental) data (median, 25th percentile, and 75th per-
centile). Estimates concentrate near 1, indicating that CDR-estimated coefficients are gen-
erally close to the global optimum given the IRF.

crisis in psychological science (Pashler and Wagenmakers, 2012; Makel and Plucker, 2014;

Simons, 2014; Open Science Collaboration, 2015; Gilmore et al., 2017; Yarkoni and Westfall,

2017). For this reason, I argue that the direct test is a defensible method for evaluating

scientific hypotheses using CDR.

One additional possibility is a hybrid of these two approaches where 2-step fitting is used

over the training set and then the second step fits are used to perform an out-of-sample non-

parametric test. While this approach may be slightly more conservative than the direct test,

it may have little practical utility because CDR is very good at finding optimal coefficients.

Table 3.2 shows aggregated fixed-effects estimates obtained by running LME models over

the CDR-convolved data X′ from the both the synthetic and the human experimental

datasets analyzed in this article. If the CDR-estimated coefficients are globally optimal

given the impulse responses, then the LME estimates for all fixed effects should be 1. As

shown, the LME-estimated fixed effects indeed cluster tightly around 1 for all three inference

types explored here. This outcome suggests that CDR offers little room for improvement

on its coefficient estimates, supporting the adequacy of the direct test for out-of-sample

comparison.

In settings where the lack of optimality guarantee is unacceptable, CDR can still be a

useful tool for data exploration, since it can estimate and visualize likely response profiles for

predictors of interest (on exploratory data). Those estimates can then be used to construct

effective and parsimonious FIR models. For example, suppose researchers have obtained a
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(a) Number of iterations (b) Ratio of iterations to minimum in same
experimental condition

Figure 3.1: Median training time by inference type. Error bars show empirical 1st

and 3rd quartiles.

CDR-estimated IRF for predictor A which decays to near 0 in 300ms, and that the mean

interval between events in their experiment is 250ms. This finding suggests they might

be able to capture most of the temporally diffuse response to A simply by inserting one

additional spillover regressor for A into their linear model. This kind of information would

otherwise be difficult to obtain without first fitting models with multiple different spillover

configurations of the same predictors, a computationally-intensive procedure. CDR can also

be used to overcome the inability of discrete-time models to estimate generalized effects of

stimulus timing (§3.3) by estimating a convolved rate predictor which can be added as an

effect to standard regression models. Results in §4.2 indicate that this may be particularly

important for some psycholinguistic response variables, especially response times in self-

paced reading.

3.7 Implementation

The experiments described in this article apply an open-source Python implementation of

the CDR model described in §3.1 (https://github.com/coryshain/cdr), built using the

Tensorflow (Abadi et al., 2015) and Edward (Tran et al., 2016) machine learning libraries.
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Eq. 3.7 is implemented as a Tensorflow computation graph and optimized using either MLE

or variational Bayesian inference.

3.7.1 Initialization

CDR fits are initially centered at the null model, i.e. a model in which there is no relationship

between the predictors and response. In such a model, the intercept is the population mean,

the variance is the population variance, all coefficients are 0 (predictors have no influence

on the response), all random effects are 0 (there is no random deviation from the population

means), and the IRF shapes are inconsequential (there is no response to the predictors).

Thus, µ is initialized at the mean of the response, σ2 is initialized at the variance of the

response, and m, u, U, and Vk are initialized at 0. Appropriate initializations for the fixed

IRF parameters vk are domain-specific, although kernels supported by this implementation

come with overridable defaults as laid out in the documentation. The kernel initializations

used in this study are described in §3.7.4.

3.7.2 Convergence

Because these CDR models use stochastic gradient optimization, it is necessary to define a

convergence criterion by which the model parameters can be deemed (locally) optimal. In-

tuitively, the model has converged when it has ceased to improve with training. Diagnosing

this condition automatically and model-independently is challenging because (1) the abso-

lute rate of change in the loss over time depends on the scale of the data and the definition

of the model and (2) the magnitude of the change in loss per iteration can be both noisy

and non-decreasing due to stochastic optimization over a non-convex surface.

The present implementation addresses these challenges by retaining a history of the

losses over a finite number of timesteps n and declaring convergence when the loss is uncor-

related with training time at a predetermined significance level α. Basing the convergence
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criterion on correlation eliminates any influence of scale on either the loss or the representa-

tion of training time, instead grounding convergence in the strength of the linear relationship

between these two quantities. To reduce the influence of noise and high-frequency autocor-

relation on the test statistic, the implementation also permits a stride length m such that

losses are only pushed to the history every m iterations, with intermediate values aggregated

through a moving average.

In particular, given a vector of losses by iteration l ∈ Rdn/me, and a vector t ∈ Zdn/me of

corresponding iteration numbers, let correlation of loss with training time be a test statistic:

ρt
def
= corr(l, t) (3.16)

Given a significance level α, the null hypothesis H0t
def
= ρt = 0 can be tested by computing

probability pρt using a Student’s t distribution with dn/me − 2 degrees of freedom and

checking that pρt < α. When this test fails to reject H0t, the losses are uncorrelated with

training time (ρt is insignificantly different from 0 at level α).

This correlation-based hypothesis test defines binary criterion s:

s
def
=


1 pρt > α

0 otherwise

(3.17)

In other words, s = 1 if and only if H0t is retained. To avoid premature convergence when

by chance ρt happens to have small magnitude, the procedure additionally stores the history

of values of s from each of the past dn/me strides in vector s ∈ {0, 1}dn/me and computes a

proportion ps of successful convergence checks:

ps
def
=

m||s||1
n

(3.18)

Convergence is declared when ps > α (i.e. when at least α × 100% of the previous dn/me
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convergence checks were positive). The overall stringency of this criterion increases with

both n/m (because the test is higher-powered) and α (because the tests reject at a higher

threshold and a larger proportion ps is required). Experiments reported in this study use

the following convergence hyperparameters: n = 500, m = 1, and α = 0.5. In other words,

convergence is declared when H0t is retained at α = 0.5 for at least 50% of the previous

500 training iterations.

3.7.3 Addressing Non-Normally Distributed Error: Log-Normal and Sinh-

Arcsinh Transforms

Like ordinary linear regression, the CDR model defined in §3.1 assumes a Gaussian error

distribution. However, it is often necessary to analyze data that violate this assumption. A

common solution to non-normal errors is to apply a normalizing transform, such as a log

transform or a power transform (Box and Cox, 1964). Transforms can complicate model

interpretation by changing the linking function. For example, log transforming the response

creates a log-linear rather than linear model on the convolved data, and model estimates

thus describe a multiplicative rather than additive change in the response as a function of

the predictors.

This study therefore also considers an alternative approach, made possible by the use of

stochastic gradient optimization directly on the likelihood surface. Instead of defining the

error distribution as Gaussian, it can be defined as a sinh-arcsinh transform on the Gaussian

distribution.8 The sinh-arcsinh transformed Gaussian is a generalization of the Gaussian

distribution that additionally contains skewness and tailweight parameters ε ∈ R and δ ∈ R+

8 The sinh-arcsinh transform on the standard normal distribution with skewness ε and tailweight δ yields
probability density fε,δ:

fε,δ(x)
def
=

{
2π(1 + x2)

}−1/2
δCε,δ(x) exp

{
−S2

ε,δ(x)/2
}

(3.19)

Sε,δ(x)
def
= sinh

{
δ sinh−1(x)− ε

}
(3.20)

Cε,δ(x)
def
=

{
1 + S2

ε,δ(x)
}1/2x

(3.21)

In practice, location and scale can also be parameterized. For additional details, see Jones and Pewsey
(2009).

70



(Jones and Pewsey, 2009). When ε = 0 and δ = 1, the distribution is Gaussian. When

ε < 0, the distribution has negative skew, and when ε > 0, the distribution has positive skew.

Tail thickness increases with δ. Both ε and δ are estimated from data, along with all other

model parameters. The advantage of using sinh-arcsinh error over normalizing transforms is

that it can flexibly adapt to asymmetrically distributed data without transforming it, thus

preserving the original scale of the response as well as the additive interpretation of model

estimates while also relaxing normality assumptions. Normalizing transforms and sinh-

arcsinh error distributions are explored in §4 for the reading and fMRI experiments, where

results show that sinh-arcsinh improves goodness of fit over Gaussian error across all model

designs, supporting its adoption for CDR modeling. However, note that sinh-arcsinh error is

not appropriate for settings in which estimates will ultimately be used in ways that assume

normally-distributed error. For example, researchers may wish to evaluate CDR models

with respect to squared error or percent variance explained. Such evaluations assume a

Gaussian likelihood and are therefore not appropriate for asymmetric error distributions

like sinh-arcsinh.

3.7.4 Experimental Procedure: General Model Parameters

In all experiments reported in this article, CDR models are fitted using the Nadam optimizer

(Dozat, 2016)9 with a constant learning rate of 0.001 and minibatches of size 1024. Nadam is

a gradient-based optimizer that performs well for many non-convex optimization problems,

and 0.001 is a widely-used default learning rate (see Tensorflow documentation: https:

//www.tensorflow.org/). Minibatch sizes in powers of two improve efficiency on standard

compute architectures, and it was found during development that a size of 210 roughly

optimized iteration speed on available hardware. These parameters were not otherwise

systematically tuned.

9The Adam optimizer (Kingma and Ba, 2014) with Nesterov momentum (Nesterov, 1983)
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In order to compare estimation methods, all models are fitted using maximum like-

lihood (MLE), black-box variational inference with independent improper uniform priors

and independent normal posteriors (BBVI-improper), and black-box variational inference

with independent normal priors and posteriors (BBVI).10 BBVI-improper and BBVI use

the same black box estimation procedure. The only difference between them is that BBVI-

improper lacks any penalties for divergence from a prior.

The analyses reported below in this article reveal dramatically faster convergence in

BBVI inference mode than in MLE or BBVI-improper modes. This asymmetry is demon-

strated by Figure 3.1, which shows (1) the mean number of training iterations (complete

passes through the training data) across all experimental conditions and (2) the mean ra-

tio of training iterations to the minimum number of iterations used by any model within

the same experimental condition. As shown, BBVI requires on average less than half as

many training iterations as MLE or BBVI-improper to reach convergence (Figure 3.1a) and

nearly always requires fewer iterations than MLE or BBVI-improper in any given model

configuration (Figure 3.1b). It is possible that the priors may discourage the model from

following tiny gradients, thereby accelerating convergence. Because of this computational

advantage, BBVI is likely to be the most useful estimation method, and it is therefore used

in all model comparisons reported below (both for null hypothesis significance testing and

for comparison of CDR to baselines), even when other estimation techniques achieve better

error.

In the BBVI setting, reasonable prior variances for intercepts, coefficients, and error

depend on the scale of the response. For this reason, this CDR implementation uses the

variance of the response in the training set as the prior variance for these parameters.

Reasonable prior variances for the impulse response parameters are independent of the

scale of the response. For simplicity, these experiments use a variance of 1. In order

10Although the software implementation includes experimental support for multivariate normal priors and
variational posteriors, this results in a quadratic increase in the number of parameters, and it did not to
provide a clear performance benefit.
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to improve both convergence and general applicability of the hyperparameters used in this

study to other kinds of data, the response variable is implicitly standardized (z-transformed)

prior to fitting. This transform is inverted in order to compute predictions and likelihoods.

As a result, all BBVI priors used in this study have unit variance and mean equal to the

initialization value used in MLE inference (described below for IRF parameters and in §3.7.1

for all other parameters).

While it is in principle sensible in a BBVI setting to use the prior as the initial value for

the variational posterior, in practice it turns out that doing so can lead to training diver-

gence in complex models due to early initial sampling of poor solutions from an excessively

wide distribution. The variational posterior is therefore initialized with a tighter standard

deviation (one one-hundredth of the standard deviation of the prior) in all BBVI-improper

and BBVI models. Note that this is merely an initialization technique — the model can

adjust the width of the variational posterior throughout training as required by the data.

It is standard practice in mixed-effects modeling to penalize the random effects (Bates

et al., 2015). All psycholinguistic analyses with random effects reported below follow Bates

et al. (2015) by penalizing all random effects (random intercepts, coefficients, and impulse

response parameters) using L2 regularization with regularization level λ = 1.0. In the

BBVI setting, a similar kind of constraint is implemented by imposing a tighter prior on

the random effects than on the fixed effects (standard deviation of 0.1 and 1.0, respectively).

The BBVI priors used in this study were not tuned in any way, and different priors may

be motivated for different datasets based on foreknowledge of the experimental domain. The

size of the hyperparameter space explored in this study is so large that additional systematic

exploration of the influence of different prior settings is computationally prohibitive and

left to future work. That said, the present results suggest that these choices of priors do

not strongly constrain the solution space, since BBVI inference finds qualitatively similar

responses to the BBVI-improper and MLE inferences, which have no priors (see Chapter 4).

Models reported here use some combination of exponential, normal, shifted gamma, and
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pseudo non-parametric linear combination of Gaussians (LCG) impulse response kernels.

The exponential, normal, and shifted gamma kernels are the probability density functions as-

sociated with each type of probability distribution, with the addition of normalization terms

to ensure that IRFs integrate to 1 over the positive real line (§3.2). For these parametric

kernels, the normalization term is the survival function of the distribution (complement of

the cumulative density function) at x = 0.

The probability density functions of the exponential, normal, and shifted gamma distri-

butions are respectively:

fExp(x;β) = −βe−βx (3.22)

fNormal(x;µ, σ2) =
1√

2πσ2
e
−(x−µ)2

σ2 (3.23)

fShiftedGamma(x;α, β, δ) =
βα(x− δ)α−1e−β(x−δ)

Γ(α)
(3.24)

The exponential distribution integrates to 1 over the positive real line and requires no

further normalization. For the normal and shifted gamma kernels, normalization requires

the corresponding survival functions:

SNormal(x;µ, σ2) = 1− 1

2

(
1 + erf

(
x− µ
σ
√

2

))
(3.25)

SShiftedGamma(x;α, β, δ) = 1− 1

Γ(α)
γ (α, β (x− δ)) (3.26)

where

erf(x) =
1√
π

∫ x

−x
e−t

2
dt (3.27)

γ(s, x) =

∫ x

0
ts−1e−tdt (3.28)
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Thus, the exponential, normal, and shifted gamma IRF kernels are defined respectively as:

Exp(x;β) = fExp(x;β) (3.29)

Normal(x;µ, σ2) =
fNormal(x;µ, σ2)

SNormal(0;µ, σ2)
(3.30)

ShiftedGamma(x;α, β, δ) =
fShiftedGamma(x;α, β, δ)

SShiftedGamma(0;α, β, δ)
(3.31)

These kernels encode increasingly flexible assumptions about the response shape. In

particular, the exponential kernel assumes that the influence of a predictor is strongest

immediately (at t = 0) and decreases monotonically over time. The only question is how

quickly, which is determined by the rate parameter β. The normal kernel relaxes this

monotonicity assumption. Like the exponential kernel, it can fit monotonically decreasing

IRFs (by finding location µ ≤ 0), but it can also fit late-peaking (rising then falling) IRFs

(by finding µ > 0), allowing the peak response to occur at some delay from the stimulus

(e.g. Smith and Levy, 2013, who found a peak surprisal response on the following word in a

self-paced reading experiment). In the latter case, the normal kernel assumes a symmetric

rise/fall pattern. The shifted gamma kernel additionally relaxes the symmetry assumption.

It can find approximately symmetric late-peaking IRFs, but it can also find IRFs that e.g.

rise quickly and then decay slowly. The shifted gamma kernel approximately subsumes the

solution space of the normal kernel, which approximately subsumes the solution space of

the exponential kernel.

As mentioned above, this study also considers a quasi-non-parametric comparison ker-

nel consisting of a linear combination of Gaussians (LCG; Goshtasby and O’Neill, 1994;

Gimel’farb et al., 2004). The LCG kernel contains n component normal kernels, each with

location, scale, and amplitude parameters. Having a more flexible control permits evalua-

tion of the extent of bias introduced by parametric kernels when applied to real world data
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in which the ground-truth IRF is unknown (§4.2, §4.3). This LCG kernel is defined as:

LCG(x;µ1,...,n, σ
2
1,...,n, β1,...,n) =

∑n
i=1 fNormal(x;µi, σ

2
i ) · βi∑n

i=1 SNormal(x;µi, σ2
i ) · βi

(3.32)

The LCG kernel is highly flexible (see §4.1, §4.2, and §4.3), yet computationally efficient,

since it has an analytical normalization constant (the sum of the component survival func-

tions). More expressive kernels are possible, such as spline functions or kernel smoothing,

but these do not have analytical integrals and therefore require numerical integration at

each optimization step in order to properly normalize them. In initial experiments, this was

found to greatly slow training without clear improvement to final fit, and therefore LCG

is used for the non-parametric comparison. In these experiments, all LCG kernels have 10

components.

Beyond any constraints imposed by the definitions of the density functions above, the

shifted gamma kernel additionally requires that α > 1 and δ < 0.11 Constraints on bounded

parameters are enforced using the softplus bijection:

softplus(x) = log(ex + 1) (3.33)

All models use the same default initializations for these kernels. For exponential kernels,

β = 1. For shifted gamma kernels, α = 2, β = 1, and δ = −1. For normal kernels, µ = 0

and σ2 = 1. For the LCG kernels, µi = 0, σi = i and αi = 1 if i = 0, αi = 0 otherwise

for i ∈ {1, . . . , 10}. This initializes the kernel with a single non-zero component, and with

incrementally wider initial components to allow the model to find later or earlier peaks.

Initializing all components with β = 0 leads to numerical degeneracies because of the

requirement that the LCG function integrate to 1.

11α > 1 helps deconfound the shape and shift parameters by ensuring that the response underlyingly has
a rising-falling profile, in which case strictly falling responses can only be found by shifting the peak to the
left of 0. δ < 0 ensures that the instantaneous response (response at x = 0) is well defined.
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Prediction from the network uses an exponential moving average of parameter iterates

with a decay rate of 0.999. BBVI models are evaluated using maximum a posteriori es-

timates obtained by setting all parameters to their posterior means. This procedure is

motivated by the law of large numbers: because all parameters have independent normal

distributions in the variational posterior, samples from that posterior converge in probabil-

ity to the posterior mean. For computational reasons, predictor histories are truncated at

256 timesteps (words) into the past.
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Chapter 4

CDR Synthetic, Reading, and fMRI Experiments

4.1 Synthetic Experiments

Before applying CDR to human-generated time series, we first empirically validate it through

simulations using synthetic data with known ground-truth impulse responses, since this per-

mits direct comparison of the CDR estimates to the true data-generating model. In the

process, we systematically explore the sensitivity of CDR estimates to several potential

sources of influence that are likely to arise in practice: noise in the response variable,

non-uniform time intervals between events, multicollinearity, and misspecification of the

impulse response kernel. As shown below, CDR recovers the data-generating model in a

wide range of settings and is robust to adverse training conditions like multicollinearity and

IRF misspecification.

4.1.1 Experimental Design

Several design details are common to all simulations reported here. All datasets contain

twenty randomly generated predictors. In all simulations except the multicollinearity ma-

nipulations, these twenty predictors are sampled from independent standard normal distri-

butions. In all datasets, ground-truth coefficients for each predictor are sampled from a

uniform distribution U(−10, 10), and a ground-truth impulse response is created for each

predictor by randomly sampling parameters for a given impulse response kernel. The re-

sponse is then generated by convolving each predictor with its assigned impulse response,

sampling the convolved signal at predetermined query points (timestamps), scaling the
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sampled signal by the ground-truth coefficients, and summing the scaled sample across

predictors in order to generate a response vector. In all simulations except the noise ma-

nipulations, Gaussian noise with standard deviation 10 is added to the generated response

vector. In all simulations except the time manipulations, time intervals between stimulus

events and response samples are asynchronous and sampled from an exponential distribu-

tion with mean 100ms. For simplicity, all synthetic datasets consist of a single timeseries

containing 10,000 response samples. For all simulations, we provide (1) qualitative assess-

ments of IRF identification by visually comparing true and estimated responses and (2)

quantitative assessments of IRF identification by computing root mean squared deviation

(RMSD) of the estimated response from the true response over 1,000 timepoints spaced

equidistantly on the 95th percentile of temporal offsets seen in training.

4.1.2 Simulation A: Noise

Simulation A explores the sensitivity of CDR estimates to noise in the response variable.

A single set of 20 independent predictors is sampled as described above, and a single set of

shifted gamma impulse responses is sampled from the following distributions: α ∼ U(1, 6),

β ∼ U(0, 5), and δ ∼ U(−1, 0). Gaussian noise with standard deviation 0 (noise free), 1, 10,

and 100 is then injected into the convolved response, and CDR models with shifted gamma

IRF kernels are fitted separately to each level of noise. The true simulated response has

a signal power (mean squared value) of 1907, and thus the signal to noise ratios of the

synthetic datasets are respectively ∞, 1907, 19.07, and 0.1907.

Qualitative results are presented in Figure 4.1. As shown, estimates closely match

the true model in all conditions, indicating that CDR estimates are robust to noise in

the response data. The BBVI-improper and BBVI inferences differ substantially in their

quantification of uncertainty. BBVI-improper is so confident in its estimates, even under

high noise, that the 95% credible intervals are not visible in the plots. BBVI, by contrast, has
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Figure 4.1: Simulation A: Noise. True synthetic model vs. CDR-estimated models with
increasingly large standard deviation σε of the Gaussian noise distribution. BBVI and
BBVI-improper are plotted with 95% credible intervals.
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wider credible intervals in general, with the widest intervals in the highest noise setting. The

use of proper priors therefore appears to support more plausible estimates of uncertainty.

Quantitative results are presented in Figure 4.4a. As shown, IRF identification is mostly

insensitive to gradations of low-level noise but predictably degrades at the highest level of

noise. True IRF recovery levels are highly similar in all model types (MLE, BBVI-improper,

BBVI).

4.1.3 Simulation B: Time

Simulation B explores the sensitivity of CDR estimates to different kinds of time intervals

between predictor and response observations. We consider three manipulations: (1) fixed vs.

variable spacing, (2) long vs. short intervals, and (3) synchronous vs. asynchronous measures

of predictors and response. Six conditions are constructed to evaluate these influences,

representing roughly increasing levels of complexity in temporal structure:

• Fixed synchronous short (FSS): Predictors and response are aligned and placed

at fixed 100ms intervals.

• Fixed synchronous long (FSL): Predictors and response are aligned and placed

at fixed 500ms intervals.

• Random synchronous short (RSS): Predictors and response are temporally aligned

and intervals are sampled from an exponential distribution with mean 100ms.

• Random synchronous long (RSL): Predictors and response are temporally aligned

and intervals are sampled from an exponential distribution with mean 500ms.

• Random asynchronous short (RAS): Predictors and response are not temporally

aligned: intervals are sampled independently for predictors on the one hand and

response on the other from an exponential distribution with mean 100ms.
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Figure 4.2: Simulation B: Time. True synthetic model vs. CDR-estimated models with
varying types of time interval.
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• Random asynchronous long (RAL): Predictors and response are not temporally

aligned: intervals are sampled independently for predictors on the one hand and

response on the other from an exponential distribution with mean 500ms.

The data generating model is constructed using the same procedure as in Simulation A.

Qualitative results are presented in Figure 4.2. As in Simulation A, estimated models

closely match the ground truth in all conditions, indicating that CDR estimates are ro-

bust to variation in the temporal spacing and synchrony of events. Quantitative results in

Figure 4.4b bear out this impression, showing that IRF recovery is no worse for random

than fixed intervals or for asynchronous than synchronous events. Figure 4.4b shows a clear

advantage for long intervals over short intervals in this simulation. Given the finite-length

history window (256 events) used in these experiments, interval length instantiates a trade-

off between resolution (improved by shorter intervals) and coverage (improved by longer

intervals). Thus, in this simulation, the improved coverage of the time dimension afforded

by longer intervals overcomes any cost from loss of temporal resolution. This trade-off is

especially pronounced in the random synchronous short condition using MLE and BBVI-

improper estimation modes, where IRF recovery performance is dramatically worse (Fig-

ure 4.4b). As shown in Figure 4.2, this is largely driven by the failure of these models to

discover a late-peaking negative IRF (negative response in purple toward the right edge of

the x axis). This failure does not occur in the longer interval condition, indicating that it

is indeed driven by lack of temporal coverage. These results highlight the importance of

using a history window that is long enough to capture the underlying temporal dynamics.

4.1.4 Simulation C: Multicollinearity

Simulation C explores the sensitivity of CDR estimates to multicollinearity in the predic-

tors. To manipulate multicolinearity in the predictors, predictor streams were drawn from

multivariate normal distributions in which the variance-covariance matrix had a diagonal

of 1 and all off-diagonal elements were set to the desired level of correlation. For example,
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Figure 4.3: Simulation C: Multicollinearity. True synthetic model vs. CDR-estimated
models with increasingly multicollinear predictors.
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(a) Simulation A. Noise (b) Simulation B: Time
(c) Simulation C: Multi-
collinearity

Figure 4.4: Root mean squared deviation (RMSD) of estimated models from ground truth
in Simulations A, B, and C.

predictors with correlation level ρ = 0.5 were drawn using the following variance-covariance

matrix: 

1 0.5 0.5 . . . 0.5 0.5 0.5

0.5 1 0.5 . . . 0.5 0.5 0.5

0.5 0.5 1 . . . 0.5 0.5 0.5

...
...

...
. . .

...
...

...

0.5 0.5 0.5 . . . 1 0.5 0.5

0.5 0.5 0.5 . . . 0.5 1 0.5

0.5 0.5 0.5 . . . 0.5 0.5 1


Six sets of predictors were generated in this way, one for each of ρ = 0 (uncorrelated

predictors), ρ = 0.25, ρ = 0.5, ρ = 0.75, ρ = 0.9, and ρ = 0.95. The data-generating model

was constructed using the same procedure as in Simulations A and B.

Qualitative results are presented in Figure 4.3. As shown, CDR recovers much of the

underlying model structure across conditions, even in a highly adverse setting where every

predictor is correlated with every other predictor at a level of 0.95. Quantitative results

(Figure 4.4c) show a roughly linear increase in RMSD with multicollinearity, but with

reasonably good IRF recovery under highly multicollinear data; even at ρ = 0.9, RMSDs

are only about twice those when ρ = 0.
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Parameters
Kernel SimD NatStor Dundee

Exponential 42 1970 166
Normal 62 2686 232

Gaussian 82 3402 298
LCG 662 21845 2080

Table 4.1: Number of parameters by kernel family and corpus (Simulation D, Natural
Stories, and Dundee, respectively). Differences between corpora are driven by the random
effects, since Natural Stories contains many more participants (181) than Dundee (10), while
Simulation D contains no random effects. Note that BBVI and BBVI-improper double these
figures by additionally fitting variances for each parameter in the variational posterior.

4.1.5 Simulation D: IRF Misspecification

Simulation D explores the ability of CDR to find reasonable IRF estimates in the presence

of mismatch between the true and modeled IRF kernels. To this end, three data-generating

models are constructed with different underlying response shapes: exponential (E), normal

(N), and shifted gamma (G). CDR models of each kernel type are fitted to each of these

datasets, such that two out of three modeled kernels for each dataset are not matched

to the underlying model (e.g. fitting exponential IRFs to the output of a normal data-

generating model). The target outcome under kernel mismatch is to discover the best

available estimate given the solution space defined by the modeled kernel. This analysis

also explores the use of non-parametric LCG kernels (described in Section 3.7.4), since their

solution space approximately subsumes all ground truth models used in this simulation. As

shown in Table 4.1, the LCG kernel is much more heavily parameterized than the others.

Note that these different kernels have asymmetrical patterns of compatibility. For ex-

ample, the solution space of the shifted gamma kernel contains the exponential kernel, since

the exponential distribution is a special case of the shifted gamma distribution (i.e. when

α = 1 and δ = 0).1 The converse does not hold: shifted gamma contains late-peaking

responses that fall outside the strictly monotonic solution space of the exponential kernel.

1Because these values lie at the parameter bounds for the shifted gamma kernel used here, the model
cannot exactly reach them. However, it can come arbitrarily close within 32-bit floating point precision.
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Figure 4.5: Simulation D: Misspecification (exponential ground truth). True exponential
model vs. CDR-estimated models using various IRF kernels.
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Figure 4.6: Simulation D: Misspecification with normal ground truth. True normal model
vs. CDR-estimated models using various IRF kernels.
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Figure 4.7: Simulation D: Misspecification (shifted gamma ground truth). True shifted
gamma model vs. CDR-estimated models using various IRF kernels.
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The normal kernel is more flexible than the exponential kernel and may therefore be able to

better approximate shifted gamma responses, but it is additionally constrained by symmetry

about the mean.

The predictors, coefficients, and shifted gamma data-generating model are constructed

using the same procedure as in Simulations A and C. The impulse responses for the ex-

ponential data-generating model are constructed by sampling β ∼ U(0, 5). The impulse

responses for the normal data-generating model are constructed by sampling µ ∼ U(−2, 2),

σ2 ∼ U(0, 2).

Qualitative results are presented in Figures 4.5, 4.6, and 4.7. As in previous simu-

lations, CDR estimates closely match the ground truth in all conditions, indicating that

CDR successfully identifies the model within the constraints imposed by its kernel, even

under mismatch between the true and modeled kernels. This finding is reassuring, since

it suggests that the particular parameterization used may not be of great importance, as

long as the kernel adequately covers the space of plausible solutions. As expected, models

with exponential kernels struggle to identify underlying normal or shifted gamma responses

with a late-peaking profile, since late peaks fall outside the solution space of the expo-

nential kernel. Within those constraints, the exponential model estimates are reasonable.

Nonetheless, in an application to real data, the exponential kernel is likely a poor choice if

late-peaking responses are plausible. In all conditions, the LCG IRF also reliably identifies

the true model. Unsurprisingly, LCG estimates exhibit noisier temporal dynamics than

their lower-dimensional counterparts, which are smooth by definition. This could poten-

tially be addressed by regularization similar to the “roughness penalty” used in existing

spline regression techniques (Wood, 2006). This possibility is left to future research.

Quantitative results are presented in Figure 4.8, which largely confirms patterns sug-

gested by the qualitative evaluation. First, as expected, the matched kernel (e.g. normal

fitted to normal) generally has the lowest RMSD across conditions, but RMSDs from nor-

mal and shifted gamma kernels are also quite competitive under mismatch. The exponential
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(a) Exponential (b) Normal (c) Shifted gamma

Figure 4.8: Simulation D: Misspecification. Root mean squared deviation (RMSD) of
estimated exponential (E), normal (N), shifted gamma (G), and non-parametric summed
Gaussian (NPG) models from ground truths.

kernel suffers predictably under mismatch, because late-peaking responses are far outside

its solution space (discussed above). LCG kernels show consistently larger RMSD than the

matched model, likely due to roughness in the high-dimensional estimates.

4.2 Reading Experiments

This section applies CDR to discover effect timecourses in human reading behavior from

two large naturalistic datasets. As argued in §2.1, analyzing naturalistic reading is a key ap-

plication area of interest, both because (1) diffusion of effects may be especially pronounced

in the naturalistic reading paradigm and (2) existing tools like FIR/spillover models have

a number of shortcomings when applied to this domain (see §2.2). Our analyses closely

follow those reported in Shain (2019) but focus primarily on validation of CDR rather than

on an empirical claim about human sentence processing. To this end, much like in the

simulation studies reported in §4.1, this study applies multiple estimation techniques and

impulse response kernels to each corpus.

The primary interest of CDR as an explanatory model is that it yields detailed estimates

of diffuse temporal structure that existing discrete-time regression techniques cannot pro-

vide. However, unlike the simulations above, the data-generating model for human reading

responses is unknown, and its temporal structure is currently poorly understood. Thus,
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direct comparison to the ground truth is not available for model validation on human data;

indeed, a potential benefit of CDR modeling is the ability to shed light on this important

question. For this benefit to be realized, it is first necessary to establish that CDR provides

a “good” model of human responses according to some standard; otherwise, its estimates

should not be trusted. Such a standard can be constructed using the predictive performance

of established statistical methods. If CDR models generalize less well to unseen data than

standard models, then their estimates of temporal structure should be treated with skepti-

cism. However, if CDR predictions perform competitively with those of standard models,

then this indicates that the model has tapped into generalizable properties of the response.

This study compares the predictive performance of CDR to that of linear mixed effects

(LME) and generalized additive (GAM) models, both of which have been used extensively

in psycholinguistics. Nonetheless, the primary advantage of CDR lies in its ability to es-

timate continuous diffusion over time, with performance comparisons serving as a sanity

check. Results show that CDR predictive performance is competitive with that of all base-

lines in each dataset and superior to all baselines overall, supporting the reliability of its

estimates of temporal structure. In addition, CDR performance is stable across a range of

estimation methods and IRF kernels.

4.2.1 Data

This reading study uses the Natural Stories (Futrell et al., 2018) and Dundee (Kennedy

et al., 2003) datasets. Natural Stories is a self-paced reading (SPR) corpus consisting of

context-rich narratives read by 181 subjects. Stimuli are designed to resemble naturally-

occurring texts while increasing the representation of rare words and syntactic constructions.

Subjects paged through the stories on a computer screen, pressing a button to reveal the

next word. The amount of time spent on each word was recorded as the response variable.

The corpus contains a total 1,013,290 events (where one event is a single subject viewing a
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single word token).2

Dundee is an eye-tracking corpus containing newspaper editorials read by 10 subjects.

The corpus contains a total of 259,957 events (where one event is a single subject fixating

a single word token for the first time from the left).3

In both reading experiments, data are partitioned into training (50%), exploratory (25%)

and test (25%) sets. The partitioning strategy attempts to respect the non-independence

of words within the same sentence, using modular arithmetic to cycle sentence IDs e into

different bins of the partition with a different phase for each subject u: partition(e, u) =

(e+u) mod 4, assigning outputs 0 and 1 to the training set, 2 to the exploratory set, and 3 to

the test set. Outlier filtering is also performed, largely following the procedures described in

Shain and Schuler (2018).4 Because CDR’s convolution operation is only correct if applied

to all preceding events within the history window, partitioning and filtering are applied only

to the response, retaining all events in the predictor matrix.5

2This figure differs from the published count in (Futrell et al., 2018) because events are not filtered from
the stimulus sequence, since they are needed for accurate deconvolution.

3A limitation of the Dundee corpus is the number of participants (10). Although each of these participants
is quite densely sampled and should therefore be able to be reliably modeled, the small number of participants
may limit the degree to which results based on Dundee can be expected to generalize to the population as
whole. Nonetheless, the purpose of the present study is not to test hypothesized effects in human sentence
processing, but rather to evaluate the empirical properties of a new modeling approach (CDR). Dundee is
one of the most extensively analyzed naturalistic eye-tracking corpora in psycholinguistics (e.g. Demberg
and Keller, 2008; Frank and Bod, 2011; Fossum and Levy, 2012; Smith and Levy, 2013; van Schijndel and
Schuler, 2015; Goodkind and Bicknell, 2018, inter alia) and therefore serves as a “standard” dataset for
initial evaluation of CDR for eye-tracking. CDR analysis of eye-tracking corpora with larger numbers of
participants (e.g. Cop et al., 2017) is left to future work.

4 For Natural Stories, following Shain et al. (2016), items were excluded if they have fixations shorter
than 100ms or longer than 3000ms, if they start or end a sentence, or if subjects missed 4 or more subsequent
comprehension questions. Analyses additionally removed any subjects with fewer than 100 datapoints after
application of the other filters, both because such subjects are likely uncooperative (missing excessive com-
prehension questions or paging too rapidly through the text) and because their data are likely insufficient
to support estimation of random effects. For Dundee, following van Schijndel and Schuler (2015), unfixated
items were excluded as well as (1) items following saccades longer than 4 words and (2) starts and ends of
sentences, screens, documents, and lines. In addition, following common practice in psycholinguistics, items
were removed if their duration included a blink (e.g. Schotter et al., 2018). Most of these outlier filters
are designed to minimize the influence of boundary effects like implicit prosody (Breen, 2014). Differences
across corpora in exclusion criteria are driven by a combination of (1) differences in precedent established
by studies that use these corpora (see citations), (2) differences in modality, since e.g. unfixated items and
long saccades are only relevant to eye-tracking, and (3) differences in source data, since e.g. only Dundee
provides information about screen, document, and line boundaries.

5In these experiments, an entire document is treated as a time series, with the result that words can
continue to influence the response across sentence boundaries.
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4.2.2 Experimental Setup

The purpose of Experiment A is to evaluate CDR as a statistical model of human reading.

To this end, all analyses share the following design features.

Response Variable

In all experiments, the response variable of interest is reading latency, under the eye-mind

assumption (Just and Carpenter, 1980) that longer latencies index greater processing dif-

ficulty. The definition of latency varies by experimental modality. For self-paced reading

data (Natural Stories), reading latency is defined as reaction time — the interval between

button presses.

For eye-tracking data (Dundee), a number of latency measures are possible (Rayner,

1998), and this study considers three such measures. Scan path duration is defined as the

time elapsed between entering a word region (from either direction) and entering a different

word region (in either direction). Under the assumption that word features (e.g. frequency

and surprisal, defined below) do not accumulate in influence from consecutive saccades

to the same word, the duration of all consecutive saccades to the same word region are

summed into a single measure. First pass duration is defined as the time elapsed between

entering a word region from the left and entering a different word region to its left or right.

Go-past duration is defined as the time elapsed between entering a word region from the

left and entering a word region to its right (including all intervening regressive fixations).

These measures differ in their treatment of the temporal order of fixations relative to the

spatial order of words on a page, which, due to regressive (backward) eye movements, are

not strictly aligned in free reading. Scan path durations follow the temporal sequence of

eye movements rather than the spatial sequence of words, whereas first pass and go-past

durations either ignore (first pass) or aggregate (go-past) the durations of regressive eye
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movements, thus bringing the fixation order and word order into alignment.6

In all cases, latency is measured in milliseconds. Because of the non-normal distribution

of reading times in psycholinguistic experiments (e.g. Frank et al., 2013), analyses also

explore log-transformed variants of reading time durations (Smith and Levy, 2011, following

e.g.), as well as the use of a non-normal error distribution (sinh-arcsinh) for estimating IRFs

from reading data.

Predictor Variables

Models use the following predictors: sentence position (index of word in sentence), document

position (index of word in document), incoming saccade length (in words, eye-tracking only),

previous was fixated (indicator for whether the preceding word was fixated, eye-tracking

only), word length (in characters), unigram surprisal,7 and 5-gram surprisal.8 Unigram

surprisal and 5-gram surprisal are computed by the KenLM toolkit (Heafield et al., 2013)

trained on Gigaword 3 (Graff et al., 2007). Examples of studies using some or all of these

predictors include Demberg and Keller (2008); Frank and Bod (2011); Smith and Levy

(2013) and Baayen et al. (2018). Models also include a deconvolutional intercept, referred

to as rate, which is designed to capture any generalized response to stimuli, independently

of their properties (§3.3). Rate is excluded from all non-CDR baseline models reported

below because it is identical to the intercept, and thus these baselines are unable to identify

rate effects.

6The question of how to define events and measures in the reading record (scan path, first pass, go-past,
regression probability, etc.) is orthogonal to the question of how to analyze the data (LME, GAM, CDR):
as shown in the Dundee results presented here, comparable discrete-time LME/GAM models with spillover
can also be constructed for each response definition, including scan paths.

7Unigrams are represented on a surprisal scale (negative log probability) simply to facilitate comparison
with 5-gram effects, but I recognize that they are a degenerate (memory-less) model of surprisal and are
usually included in psycholinguistic models to capture lexical retrieval rather than prediction effects (Staub,
2015).

8All surprisals used in this study are fully lexicalized in that the support of their underlying probability
models is (a subset of) the vocabulary of English, rather than syntactic abstractions like parts of speech.
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Models include a rich random effects structure to capture variation between individuals,

with by-subject random intercepts, slopes, and IRF parameters. By-word random inter-

cepts, though common in psycholinguistic studies (Demberg and Keller, 2008), are avoided

because (1) they can absorb context-independent effects like word length and unigram log

probability and (2) early experiments suggest that by-word intercepts lead to overfitting

(based on exploratory set performance) in both CDR and baseline models. All predictors

are rescaled by their standard deviations prior to fitting.9

Prior work suggests the following a priori expectations about the effect estimates for

these predictors. Saccade length, word length, and 5-gram surprisal are expected to increase

processing difficulty (Demberg and Keller, 2008). According to several preceding studies,

unigram surprisal should also positively modulate processing difficulty (see Staub, 2015, for

review), although this pattern has recently been called into question (Chapter 5). Previous

was fixated has been shown to have a facilitation effect (van Schijndel and Schuler, 2015).

Sentence position and document position are designed to capture trends in the response

over different timescales (sentences and documents). Previous work indicates that reading

times decrease over the course of experiments (Baayen et al., 2017), suggesting an expected

negative effect of document position. Previous estimates for sentence position have been

small-magnitude and negative (Demberg and Keller, 2008; van Schijndel and Schuler, 2015).

Rate effects in reading data have not been carefully studied, in part for lack of CDR (though

see Shain and Schuler, 2018).

The predictors saccade length, word length, unigram surprisal, and 5-gram surprisal

are all motor, perceptual, or linguistic variables to which the sentence processing system

has been shown to respond upon word fixation (Demberg and Keller, 2008) and to which

the response might not be perfectly instantaneous. To the extent that temporally diffuse

responses to any of these predictors exist, it is desirable that the model be able to capture

them. By contrast, document position and sentence position merely index progress through

9Except rate, which has no variance and therefore cannot be scaled by its standard deviation of 0.
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documents and sentences respectively. They are not perceptual or linguistic properties of

the experiment, and it is unclear how any diffuse impulse response attributed to them would

be interpreted. Following prior work (Demberg and Keller, 2008; Baayen et al., 2018), their

presence in the model is motivated by the possibility of trends in the response. For this

reason, parametric IRFs are fitted to all predictors except document position and sentence

position, which are assigned a (parameter-free) Dirac delta IRF (i.e. a linear coefficient).

Document position and sentence position are thus shown in plots as stick functions at t = 0.

Because the functional family of the underlying response is unknown, these analyses explore

the impact of the modeled response kernel by fitting exponential (E), normal (N), shifted

gamma (G), and pseudo non-parametric linear combination of Gaussians (LCG) kernels

with default initializations (§3.7.1), as in Simulation D (§4.1).

In scan path analyses of Dundee (which contain regressive fixations), it is plausible that

the variables of interest exert different influences in the scan path record depending on

whether they belong to a word that is being fixated for the first time vs. a word that is

being re-fixated or fixated as part of a regression. This is especially true of e.g. surprisal —

presumably a surprising word is less surprising after it has already been observed. While

there are many conceivable ways of accounting for the possibility of such interactions in the

model design, in the interests of parsimony this study uses a simple approach of splitting

each variable into two predictors, one corresponding to fixations that are part of a regres-

sive eye movement, and one corresponding to fixations that are not. These two variants

thus partition the variable among the fixations. For example, the single vector of surprisal

values by fixation is split into two vectors, one containing only those values that are asso-

ciated with regressive fixations, and one containing only those values that are associated

with non-regressive fixations, with zeros elsewhere. In all results, regressive estimates are

distinguished with “(+reg)”. In addition, scan path models include an indicator variable

for notregression, to account for any generalized difference in response profile for regressive

vs. non-regressive fixations.
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Model Comparison

To establish a standard of comparison for evaluating predictive performance, baseline LME

and GAM models are also fitted to the same data. Because the purpose of CDR is scientific

modeling rather than engineering, the primary results of interest are the IRFs themselves

and the insights they provide into human sentence processing. Therefore, the baseline

models are used to construct a standard of reliability in predictive performance for each

dataset, and comparison to them is intended to validate the CDR estimates. If CDR

performs comparably to or better than baseline models in terms of generalization error,

then this serves as evidence that the detailed estimates of temporal dynamics provided by

CDR reliably characterize the response variable of interest. Both baseline types (LME and

GAM) are fitted with and without three preceding spillover positions for each predictor

(baselines with spillover are designated throughout this paper with the suffix -S ), since

a fourth-order FIR filter (spillover 0 through 3) is among the longest filters attested in

previous naturalistic reading experiments (e.g. Smith and Levy, 2013).

GAM models are used as a reference because of their established usage in psycholin-

guistic data analysis. However, note that CDR and GAM are designed to address different

limitations of linear models. CDR addresses the possible existence of continuous temporal

diffusion of effects in non-uniform time series, while GAM does not. GAM addresses the

possible existence of arbitrary smooth non-linear functional relationships between predic-

tors and response, while CDR does not (though see Chapter 8 for a deep neural extension of

CDR that does). The relative performance of CDR vs. GAM may therefore vary by dataset

according to the relative importance of temporal diffusion vs. non-linear effects in describ-

ing the underlying response function. Extension of CDR to directly estimate non-linear

response functions is left to future work, though see §2.1 for elaboration on a proposal to

combine CDR and GAM models in a two-step regression framework.

In summary, the principal advantage of CDR for scientific modeling is the fact that

it produces high-resolution estimates of temporal diffusion that cannot be obtained using
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established techniques like LME or GAM. The fact that CDR additionally outperforms

those other techniques in terms of overall generalization error (see Table 4.6 below) primarily

supports the reliability of the model’s estimates.

4.2.3 Results

Figure 4.9 presents CDR-estimated IRFs for Natural Stories, and Figures 4.11, 4.13, and

4.15 respectively present scan path, first pass, and go-past IRF estimates in Dundee. For

ease of comparison, x- and y-axis dimensions are shared within each response definition per

dataset. However, some estimates (Natural Stories and Dundee go-past) are so extreme

that including them would compromise visual clarity. In these cases, estimates are clipped

in the main plots, and plots of the full responses with adjusted y-axes are shown under the

heading “Clipped plots”.

Models show similar estimates of temporal dynamics across response definitions, er-

ror definitions, and IRF kernels, and generally conform to prior expectations about effect

sizes and direction, as discussed below, including across different duration definitions in

Dundee.10 Furthermore, broad patterns emerge across datasets. Rate obtains a large-

magnitude, negative, and slowly decaying IRF across datasets and kernel families. This is

consistent with the existence of an inertia effect, such that quicker reading in the recent past

10There are some key exceptions to this pattern. First, some models of go-past duration in Dundee find
very large early saccade length effects, in some cases orders of magnitude larger than any other effect in the
model. This outcome is relatively uncommon. Exceptions are primarily found in Gaussian error models of
untransformed Dundee go-past durations, although two such examples also occur in Gaussian error models of
log-transformed go-past durations (see “Clipped plots” in Figure 4.15). The source of these apparent outlier
estimates using go-past durations is left to future research. Second, the Gaussian error BBVI-estimated LCG
model of Dundee scan path durations is a clear outlier compared to the rest of the Dundee scan path models:
it finds very large credible intervals for some estimates, and its predictive performance is very poor, both
in-sample and out-of-sample (Table 4.3). This result suggests divergent training and motivates caution when
using heavily parameterized CDR models, at least under BBVI estimation, where initial random sampling
of parameter estimates can yield poor-quality samples and large gradients. If this particular model were the
basis of a scientific investigation, such evidence of training divergence would motivate the use of different
hyperparameters (e.g. a lower learning rate). However, it is reassuring that this outcome is quite rare in
practice, occurring in only one of the hundreds of models fitted for this study.
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Figure 4.9: Natural Stories: IRF estimates using linear vs. logarithmic responses, Gaus-
sian vs. sinh-arcsinh error distributions, and various impulse response kernels.
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Figure 4.10: Natural Stories: Quantile-quantile plots of fitted (x -axis) to true (y-axis)
error distributions on the training set, using linear vs. logarithmic responses, Gaussian
vs. sinh-arcsinh error distributions, and various impulse response kernels. The theoretical
best-fit line is plotted in red.
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Figure 4.11: Dundee (scan path): IRF estimates using linear vs. logarithmic responses,
Gaussian vs. sinh-arcsinh error distributions, and various impulse response kernels. IRFs
are distinguished by whether they correspond to response estimates within regressive eye
movements (+reg) or not (–reg).
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Figure 4.12: Dundee (scan path): Quantile-quantile plots of fitted (x -axis) to true (y-
axis) error distributions on the training set, using linear vs. logarithmic responses, Gaussian
vs. sinh-arcsinh error distributions, and various impulse response kernels. The theoretical
best-fit line is plotted in red.
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Figure 4.13: Dundee (first past): IRF estimates using linear vs. logarithmic responses,
Gaussian vs. sinh-arcsinh error distributions, and various impulse response kernels.
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Figure 4.14: Dundee (first pass): Quantile-quantile plots of fitted (x -axis) to true (y-
axis) error distributions on the training set, using linear vs. logarithmic responses, Gaussian
vs. sinh-arcsinh error distributions, and various impulse response kernels. The theoretical
best-fit line is plotted in red.
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Figure 4.15: Dundee (go-past): IRF estimates using linear vs. logarithmic responses,
Gaussian vs. sinh-arcsinh error distributions, and various impulse response kernels.
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Figure 4.16: Dundee (go-past): Quantile-quantile plots of fitted (x -axis) to true (y-axis)
error distributions on the training set, using linear vs. logarithmic responses, Gaussian
vs. sinh-arcsinh error distributions, and various impulse response kernels. The theoretical
best-fit line is plotted in red.
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tends to engender quicker reading at the current word as well. This effect is especially pro-

nounced in Natural Stories, where the rate estimate is many times larger in magnitude than

that of any other predictor, suggesting that self-paced reading may be particularly suscep-

tible to influences from inertia (i.e. habituation to repeated button presses). Nevertheless,

other predictors are also estimated to influence reading latencies over and above rate. Word

length and 5-gram surprisal are given positive estimates, consistent with prior expectations

of processing costs associated with each of these variables. Estimates for unigram surprisal

in both corpora are generally negative or null, consistent with results reported in Chapter 5.

Models also reveal asymmetries. IRFs in Dundee decay more quickly than those in

Natural Stories, suggesting a less pronounced influence of temporal diffusion in the eye-

tracking modality compared to the self-paced reading modality. This suggestion is further

supported by a much stronger improvement in predictive performance from using CDR for

Natural Stories than Dundee (see Tables 4.2 and 4.3). Within the Dundee estimates, IRFs

for word length generally decay more quickly than those for unigram surprisal or 5-gram

surprisal, which is consistent with the hypothesis that higher-level predictive coding and/or

lexical retrieval processes entail more computation and therefore engender a slower response

than a low-level occulomotor variable like word length (Shain and Schuler, 2018). This

pattern does not seem to obtain in Natural Stories, suggesting an influence of modality on

comprehension patterns. Dundee models also generally find a large-magnitude, negative,

rapidly decaying IRF for previous was fixated, suggesting a strong but brief facilitation

effect for single-word saccades, perhaps due to parafovial processing from the preceding

word. Dundee scan path results also indicate that there are indeed substantially different

estimates for variables depending the [±regression] dimension: all effects are attenuated

under a regressive eye-movement.

As in the synthetic experiments reported in §4.1, the LCG estimates show wiggly dy-

namics but generally recapitulate the overall shape trends that emerge using parametric

kernels. LCG models also generally do not achieve much better generalization error than

108



parametric models, although improvements to training fit are sometimes quite large (Ta-

bles 4.2 and 4.3). These findings suggest that the simpler parameteric kernels (1) are not

too constraining to find near-optimal response shapes and (2) are less prone to overfitting

than the pseudo-non-parametric kernels.

The models generally find exponential-like kernel shapes across datasets and kernel

families. This suggests that the effects of these variables on reading behavior are mostly

monotonic — the properties of a word exert the biggest influence on fixations to that word,

with diminishing influence on fixations to subsequent words. While this has often been

assumed in reading research (e.g. Rayner, 1998), here it is an emergent finding. Two key

exceptions occur in the Natural Stories estimates, where word length is given a large late-

peaking estimate under the normal kernel and the rate response is initially strongly positive

and quickly dips strongly negative under the LCG kernel. The late-peaking word length

possibly merits further investigation, although several considerations cast suspicion on it.

First, word length is generally considered to be a low-level effect of visual word recognition

and is thus not expected to have a late effect a priori. Second, many implementationally

similar CDR models do not recover the same response profile for word length. Third, the

model that found this particular effect shape for word length does not achieve systematically

better generalization performance over those that did not (Table 4.2). That particular re-

sponse component is thus plausibly an artifact, although follow-up study may be warranted.

The initial positivity in the LCG estimate for rate is likely explained by two facts: (1) the

rate estimate at time 0 is confounded with the model intercept, and (2) fixations shorter

than 100ms (approximately the length of the positivity) are filtered out by standard pre-

processing in Natural Stories. There is thus little training signal for the IRF shape over the

interval 0-100ms, and the more flexible LCG kernel is capable of finding spurious estimates

there.

Goodness of fit results are visualized as quantile-quantile plots in Figures 4.10, 4.12,

4.14, and 4.16. As shown, both the normalizing (log) transform and the asymmetric sinh-
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arcsinh error distribution improve goodness of fit across model types, with the best fit

consistently occurring in sinh-arcsinh models of log-transformed fixation durations. The

true error distribution for raw fixation durations tends to have a heavier right tail than

that of the fitted distribution, even under sinh-arcsinh. This suggests that sinh-arcsinh

on its own may not be sufficiently expressive to account for very skewed data. However,

sinh-arcsinh consistently eliminates the heavy left tail visible in the Gaussian models, and

it tends to better account for the right tail, thus improving fit across the board compared

to Gaussian models in matched experimental conditions. These results indicate that sinh-

arcsinh error is beneficial across designs, even if it cannot completely eliminate poor fit on

its own.

In summary, the IRFs recovered by CDR accord with prior expectations about the

reading response and are largely consistent across modalities and kernel definitions, while

shedding additional light on fine-grained details of temporal structure.

To validate the CDR estimates, comparisons to baseline LME and GAM models for

all response definitions in Natural Stories and Dundee are presented in Tables 4.2 – 4.5.

CDR models outperform (i.e. achieve better exploratory and/or test set error than) all

baselines on Natural Stories, and they generally outperform the LME-based models on

Dundee. GAM without spillover outperforms CDR on Dundee without log transformation

and mostly underperforms CDR with log transformation, although the errors are similar in

magnitude throughout. GAM with spillover systematically outperforms CDR in Dundee,

though again the errors are relatively close, especially under log transformation. The limited

performance of CDR relative to GAM with spillover is likely due to some combination of (1)

the relatively constrained degree of temporal diffusion in Dundee, as revealed by the rapidly

decaying response estimates in Figures 4.11, 4.13, and 4.15, and (2) the requirement of CDR

to generate responses through linear combination of the convolved predictors, while GAM

estimates non-linear relationships between predictors and response, and (3) the greater

concision of CDR models, which contain substantially fewer parameters than GAM models

110



Natural Stories (ms) Natural Stories (log-ms)
Model Train Expl Test Train Expl Test
LME 20179 20624 20369 0.0803 0.0818 0.0815

LME-S 19980† 20471† 20230† 0.0789† 0.0807† 0.0803†

GAM 20070 20501 20255 0.0798 0.0814 0.0810
GAM-S 19873 20349 20109 0.0784 0.0802 0.0799

CDR-E-MLE 17766 18172 — 0.0630 0.0643 —
CDR-E-BBVI.imp 17765 18168 — 0.0630 0.0643 —

CDR-E-BBVI 18106 18361 — 0.0644 0.0651 —
CDR-N-MLE 17487 18060 — 0.0622 0.0641 —

CDR-N-BBVI.imp 17500 18058 — 0.0622 0.0640 —
CDR-N-BBVI 17686 18182 — 0.0630 0.0645 —
CDR-G-MLE 17510 18053 — 0.0620 0.0656 —

CDR-G-BBVI.imp 17551 18045 — 0.0623 0.0643 —
CDR-G-BBVI 18118 18373 18212 0.0646 0.0652 0.0654

CDR-LCG-MLE 16222 18785 — 0.0569 0.0657 —
CDR-LCG-BBVI.imp 16153 18770 — 0.0567 0.0659 —

CDR-LCG-BBVI 17437 17805 — 0.0613 0.0627 —

Table 4.2: Natural Stories. CDR vs. baselines, mean-squared error. CDR results shown
using (E)xponential, (N)ormal, Shifted (G)amma, and non-parametric LCG response ker-
nels, fitted using MLE, BBVI improper, and BBVI. Best-performing models within the sets
of baseline and CDR models are shown in italics. Best-performing overall models are shown
in bold. Daggers (†) indicate convergence failures.

with spillover (GAM fits multidimensional smooth functions for each spillover position of

each predictor, in addition to the random effects model). Indeed, Chapter 8 shows that

relaxing linearity constraints on CDR allows generalization performance to surpass that of

GAM-S. Nonetheless, the ensemble of exploratory set comparisons support the reliability

of CDR estimates, since they yield similar or improved generalization performance across

the board.

CDR is statistically evaluated against the baseline models in two ways: (1) by compar-

ing test-set performance against each baseline and (2) by comparing overall success rates

of CDR models against each baseline on the exploratory set. For (1), to avoid multiple

comparisons, CDR-G-BBVI is selected as the representative CDR model across reading

datasets, its generalization performance on the test set is compared to that of all baseline
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Model Dundee (ms) Dundee (log-ms)
Train Expl Test Train Expl Test

LME 14645† 15215† 15230† 0.1790† 0.1807† 0.1801†

LME-S — — — — — —
GAM 14476 15055 15064 0.1779 0.1795 0.1791

GAM-S 14340 14942 14973 0.1757 0.1776 0.1773
CDR-E-MLE 14510 15055 — 0.1769 0.1784 —

CDR-E-BBVI.imp 14508 15055 — 0.1769 0.1784 —
CDR-E-BBVI 14573 15107 — 0.1775 0.1788 —
CDR-N-MLE 14493 15055 — 0.1765 0.1783 —

CDR-N-BBVI.imp 14501 15069 — 0.1764 0.1782 —
CDR-N-BBVI 14545 15081 — 0.1775 0.1788 —
CDR-G-MLE 14501 15063 — 0.1767 0.1785 —

CDR-G-BBVI.imp 14508 15058 — 0.1766 0.1784 —
CDR-G-BBVI 14574 15104 15171 0.1776 0.1789 0.1789

CDR-LCG-MLE 14109 15204 — 0.1711 0.1810 —
CDR-LCG-BBVI.imp 14083 15283 — 0.1711 0.1806 —

CDR-LCG-BBVI 18295 18675 — 0.1779 0.1792 —

Table 4.3: Dundee (scan path). CDR vs. baselines, mean-squared error. CDR results
shown using (E)xponential, (N)ormal, Shifted (G)amma, and non-parametric LCG response
kernels, fitted using MLE, BBVI improper, and BBVI. Best-performing models within the
sets of baseline and CDR models are shown in italics. Best-performing overall models are
shown in bold. Daggers (†) indicate convergence failures. LME-S performance metrics
could not be obtained for scan paths because of long runtimes required for training.
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Model Dundee (ms) Dundee (log-ms)
Train Expl Test Train Expl Test

LME 13152† 14204† 14026† 0.1516 0.1542 0.1531
LME-S 13112† 14162† 14024† 0.1507† 0.1532† 0.1526†

GAM 13007 14065 13871 0.1510 0.1536 0.1525
GAM-S 12882 13948 13771 0.1491 0.1518 0.1508

CDR-E-MLE 13040 14077 — 0.1500 0.1529 —
CDR-E-BBVI.imp 13040 14079 — 0.1500 0.1530 —

CDR-E-BBVI 13071 14103 — 0.1505 0.1529 —
CDR-N-MLE 13030 14163 — 0.1498 0.1542 —

CDR-N-BBVI.imp 13037 14068 — 0.1498 0.1543 —
CDR-N-BBVI 13063 14077 — 0.1504 0.1526 —
CDR-G-MLE 13034 14069 — 0.1499 0.1534 —

CDR-G-BBVI.imp 13037 14072 — 0.1499 0.1534 —
CDR-G-BBVI 13073 14106 13960 0.1505 0.1539 0.1520

CDR-LCG-MLE 12769 14189 — 0.1465 0.1551 —
CDR-LCG-BBVI.imp 12788 14109 — 0.1466 0.1547 —

CDR-LCG-BBVI 13069 14092 — 0.1501 0.1526 —

Table 4.4: Dundee (first pass). CDR vs. baselines, mean-squared error. CDR results
shown using (E)xponential, (N)ormal, Shifted (G)amma, and non-parametric LCG response
kernels, fitted using MLE, BBVI improper, and BBVI. Best-performing models within the
sets of baseline and CDR models are shown in italics. Best-performing overall models are
shown in bold. Daggers (†) indicate convergence failures.

models.11 Comparisons use a paired permutation test (Demšar, 2006) with 10,000 resam-

pling iterations, pooling error vectors from all tasks (both linear and log responses from

both Natural Stories and Dundee) into a single test.12 For (2), the empirical probability

of an arbitrarily chosen CDR model outperforming each baseline model on the exploratory

set (a success) is tested against a null hypothesis of chance probability (0.5), using a bi-

nomial test. This test assesses the general robustness of CDR compared to the baselines,

aggregating over CDR hyperparameters by testing whether the probability of improvement

from using an arbitrarily chosen CDR model type differs from chance. Results are given in

Table 4.6. As shown, CDR-G-BBVI significantly outperforms all baselines in terms of test-

11The choice of BBVI for this analysis was motivated in §3.7.4. Of the BBVI models, comparisons focus on
shifted gamma because it is the most flexible of the parametric kernels and therefore likely to be of interest
to future applications of CDR to reading times. Differences in generalization performance between kernels
tend to be small.

12To ensure comparability across corpora with different error variances, per-datum errors are first scaled
by their standard deviations within each corpus. Standard deviations are computed over the joint set of
error values in each pair of CDR and baseline models.
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Model Dundee (ms) Dundee (log-ms)
Train Expl Test Train Expl Test

LME 44184 39523 42948 0.2073† 0.2072† 0.2070†

LME-S 44097† 39476† 43014† 0.2057† 0.2057† 0.2058†

GAM 43976 39289 42704 0.2063 0.2061 0.2060
GAM-S 43476 39483 42180 0.2034 0.2036 0.2035

CDR-E-MLE 43094 41322 — 0.2049 0.2046 —
CDR-E-BBVI.imp 43094 41338 — 0.2049 0.2046 —

CDR-E-BBVI 43178 41926 — 0.2054 0.2051 —
CDR-N-MLE 42935 41449 — 0.2045 0.2043 —

CDR-N-BBVI.imp 42944 41351 — 0.2048 0.2042 —
CDR-N-BBVI 42975 40776 — 0.2053 0.2047 —
CDR-G-MLE 42864 39844 — 0.2039 0.2036 —

CDR-G-BBVI.imp 42864 39876 — 0.2041 0.2037 —
CDR-G-BBVI 43222 40970 40018 0.2054 0.2051 0.2052

CDR-LCG-MLE 42329 41798 — 0.1998 0.2061 —
CDR-LCG-BBVI.imp 42336 41678 — 0.2002 0.2052 —

CDR-LCG-BBVI 42995 39540 — 0.2047 0.2044 —

Table 4.5: Dundee (go-past). CDR vs. baselines, mean-squared error. CDR results
shown using (E)xponential, (N)ormal, Shifted (G)amma, and non-parametric LCG response
kernels, fitted using MLE, BBVI improper, and BBVI. Best-performing models within the
sets of baseline and CDR models are shown in italics. Best-performing overall models are
shown in bold. Daggers (†) indicate convergence failures.

Permutation test Binomial test
Baseline p Success rate p

LME 1.0e-4*** 0.90 2.2e-16***
LME-S 1.0e-4*** 0.87 2.2e-16***

GAM 1.0e-4*** 0.67 2.2e-6***
GAM-S 1.0e-4*** 0.36 0.36

Table 4.6: Reading data model comparison. Permutation tests of improvement on test
set from CDR-G-BBVI over baselines (pooled across all tasks), along with binomial tests
of the probability of CDR models improving over each baseline, aggregating over training
and exploratory sets (those on which all CDR models are evaluated). Note: Dundee scan
path durations are excluded from the LME-S comparison because runtime limits prevented
training from terminating.
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set error. In addition, the CDR success rate over all baselines but GAM-S is significantly

greater than chance, indicating that an arbitrarily chosen CDR configuration is likely to

outperform these baselines, even without careful tuning on an exploratory set.13

4.2.4 Discussion

This application of CDR to the study of human reading latencies shows consistent estimates

across response kernels that largely align with prior expectations but additionally provide

high-resolution insights into underlying temporal dynamics that are difficult to obtain using

standard statistical models. Results additionally show a significant overall improvement in

generalization error from CDR over baseline models, supporting the trustworthiness of

estimated response functions.

4.3 fMRI Experiments

In this analysis, CDR is used to infer the shape of the hemodynamic response function

(HRF) from fMRI measures of brain responses to variably-spaced naturalistic stimuli. There

is already an extensive literature on HRF discovery using discrete-time deconvolutional

methods (Josephs et al., 1997; Friston et al., 1998a; Miezin et al., 2000; Gitelman et al.,

2003; Lindquist et al., 2009; Pedregosa et al., 2014, inter alia). These approaches rely

on stimulus designs in which events are regularly spaced and aligned with the fMRI scan

times. For fMRI researchers seeking the benefits to ecological validity afforded by the

naturalistic experimental paradigm (Hasson et al., 2010; Hasson and Honey, 2012; Hasson

et al., 2018; Campbell and Tyler, 2018), this requirement poses a problem, since many

13The failure to outperform GAM-S in the binomial test may to be due in part to the increased weight
implicitly placed on Dundee, where CDR performs less well relative to GAM-S, by considering multiple
response definitions. Binomial tests using first pass or go-past durations only are significant even over
GAM-S, though the success rates are lower than against the other baselines. This again suggests that the
relative importance of controlling for temporal diffusion (CDR) vs. non-linear effects (GAM) may be less
great in the Dundee corpus, where diffusion appears to be relatively constrained. Nonetheless, a major
advantage of the CDR approach is its ability to estimate the extent of diffusion in general, and thus to
reveal circumstances in which diffusion plays a more or less pronounced role.
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naturalistic stimuli (including language) do not consist of regularly spaced events occurring

at integer multiples of the fMRI scanner’s acquisition rate. Naturalistic fMRI experiments

are therefore an important target application of continuous-time deconvolution, since CDR

imposes no such requirement on the stimulus design. Here, CDR models are trained on a

naturalistic fMRI dataset and compared to existing methods for modeling fMRI measures

of neural responses to naturalistic language stimuli.

4.3.1 Data

fMRI data collection and preprocessing are described in detail in Chapter 6,14 with only

high level details presented here. Data were collected from 78 participants (30 males)

exposed to auditory presentation of texts from the Natural Stories corpus (Futrell et al.,

2018) read by one of two speakers (1 male, 1 female). Left-hemisphere fronto-temporal

language regions are functionally localized on a participant-specific basis using a separate

localizer task (Fedorenko et al., 2010; Braze et al., 2011; Vagharchakian et al., 2012; Blank

et al., 2016; Scott et al., 2017, inter alia). The response variable consists of average blood

oxygen level dependent (BOLD) contrast imaging signal within the voxels of six functionally

defined regions of interest (fROIs) constituting the left-hemisphere fronto-temporal language

network: inferior frontal gyrus (IFG) and its orbital part (IFGorb), middle frontal gyrus

(MFG), anterior temporal cortex (ATL), posterior temporal cortex (PTL), and angular

gyrus (AngG).

Similarly to Experiment A, training (50%), exploratory (25%), and test (25%) sets are

created using modular arithmetic. The fMRI study uses a slower partitioning cycle (15 TRs

or 30s) compared to the reading study in §4.2, which is motivated by a desire to reduce

correlation between the elements of the partition in light of strong prior evidence that the

BOLD signal is highly auto-correlated. In particular, TR numbers e are cycled into different

bins of the partition with a different phase for each subject u: partition(e, u) = b e+u15 c mod 4,

14Data are available at https://osf.io/eyp8q/.
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again assigning outputs 0 and 1 to the training set, 2 to the exploratory set, and 3 to the

evaluation (test) set.

4.3.2 Experimental Settings

Predictor and Response Variables

The dependent variable is average BOLD response within each fROI, with all fROIs com-

bined into a single model. Unlike reading latencies, BOLD measurements are not strictly

positive and generally not heavily skewed. Therefore, in contrast to the reading experi-

ments above, no normalizing (e.g. logarithmic) transformations are explored on the fMRI

response, although analyses still explore the impact of Gaussian vs. sinh-arcsinh error. In

addition to rate, unigram surprisal, and 5-gram surprisal, all implemented identically to the

reading experiments in §4.2, models also include a predictor for sound power (e.g. Brennan

et al., 2016), estimated as frame-by-frame root mean squared energy (RMSE) of the audio

stimuli computed using the Librosa software library (McFee et al., 2015). Because sound

power is a continuous rather than event-based predictor, it is implemented by taking regular

RMSE samples every 100ms. Sound power thus uses RMSE sample times as timestamps

rather than word onsets, and CDR’s event-based deconvolutional procedure thus implicitly

uses a Riemann sum approximation of the continuous sound power convolution integral.

To implement the assumption of a fixed-shape hemodynamic response in a given cortical

region, the parameters of the IRF kernel are tied across all predictors within each region,

while giving each predictor its own coefficient in order to estimate different response am-

plitudes. Models also include a linear predictor for repetition time number (TR number,

the sample’s index within the current story), designed to capture any linear trends in the

overall response. Models contain by-fROI random intercepts, slopes, and HRF parameters

for each of these predictors, along with by-subject random intercepts.15

15As discussed in Chapter 6, this dataset does not appear to support identification of richer by-subject
random effects models, which generalize poorly to the out-of-sample sets.
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Hemodynamic Response Kernels

Several IRF kernels based on the double-gamma hemodynamic response function (Boynton

et al., 1996) are considered:

f(x;α1, β1, c, α2, β2) =
βα1

1 xα1−1e−β1x

Γ(α1)
− cβ

α2
2 xα2−1e−β2x

Γ(α2)
(4.1)

The normalization constant for this kernel is simply 1
1−c , since it consists of a sum of two

scaled gamma probability densities whose integrals over the positive reals are 1 and −c,

respectively. A 5-parameter HRF5 kernel is therefore defined as:

HRF5(x;α1, β1, c, α2, β2)
def
= f(x;α1, β1, c, α2, β2) / (1− c) (4.2)

Because the double-gamma HRF is fairly heavily parameterized (5 parameters), this study

also explores the impact of reparameterizations that reduce the flexibility of the kernel

through parameter tying, constraining the kernel toward the canonical HRF, where α1 = 6,

β1 = 1, c = 1
6 , α2 = 16, and β2 = 1 (Lindquist et al., 2009). Thus, in addition to the

5-parameter kernel shown in eq. 4.2 (HRF5), this study also considers the following kernel

variants:

• A 4-parameter variant (HRF4) with tied rate parameter β:

HRF4(x;α1, β, c, α2)
def
=

(
βα1xα1−1e−βx

Γ(α1)
− cβ

α2xα2−1e−βx

Γ(α2)

)
/ (1− c) (4.3)

• A 3-parameter variant (HRF3) which additionally ties the shape parameters α1 and

α2 to have a constant offset of 10, as used by SPM’s canonical HRF:

HRF3(x;α, β, c)
def
=

(
βαxα−1e−βx

Γ(α)
− cβ

α+10xα+9e−βx

Γ(α+ 10)

)
/ (1− c) (4.4)
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Kernel Parameters

HRF1 128
HRF2 135
HRF3 142
HRF4 149
HRF5 156
LCG 331

Table 4.7: Number of parameters by kernel in the fMRI experiment. Note that BBVI and
BBVI-improper double these figures by additionally fitting variances for each parameter in
the variational posterior, and that sinh-arcsinh models additionally include parameters for
the skewness and tailweight of the response.

• A 2-parameter variant (HRF2) which additionally fixes the undershoot constant c at

SPM’s default value of 1
6 :

HRF2(x;α, β)
def
=

(
βαxα−1e−βx

Γ(α)
− βα+10xα+9e−βx

6Γ(α+ 10)

)
/

(
5

6

)
(4.5)

• A 1-parameter variant which fixes the shape parameter α at SPM’s default value of

6, implementing a “stretchable“ canonical HRF:

HRF1(x;β)
def
=

(
β6x5e−βx

Γ(6)
− β16x15e−βx

6Γ(16)

)
/

(
5

6

)
(4.6)

In all of these kernels, parameters are initialized at the SPM defaults for the canonical HRF

presented above.

As in reading and synthetic experiments, this study also consider LCG kernels. As dis-

cussed above, the LCG models are more heavily parameterized than those with parametric

kernels (Table 4.7, see Table 4.1 for reading models).

Model Comparison

To validate the CDR estimates of the HRF, CDR fits are compared to those produced by

four existing approaches for modeling naturalistic fMRI experiments. The first approach
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is pre-convolving the stimuli using the canonical HRF (Canonical HRF), as is done in

many naturalistic studies (Brennan et al., 2012; Willems et al., 2015; Henderson et al.,

2015, 2016; Lopopolo et al., 2017, inter alia). This approach has advantages for parsimony,

since it avoids the need to fit coefficients at multiple time offsets. But it assumes a fixed,

universal hemodynamic response that may not accurately describe the response profile in a

given brain region (Handwerker et al., 2004). The second approach is using piecewise linear

interpolation to resample the predictors at timepoints that align with the fMRI scan times

(Interpolated). This approach distorts the predictor series by treating it as a sequence

of samples from an underlyingly continuous signal (see §2.2 for discussion). The third

approach is using the fMRI scan times to define discrete temporal bins and then average

the predictor values within each bin (Averaged). This approach has been used, for example,

by Wehbe et al. (2020). The fourth approach follows Huth et al. (2016) in downsampling

the predictor series to the temporal resolution of the fMRI signal by convolving it with a

low-pass Lanczos filter with 3 lobes and a cutoff frequency of 0.25, the Nyquist frequency

of the fMRI scanner (Lanczos).16 This method essentially implements a “soft“ variant of

the averaging approach by taking a weighted sum of the stimuli in the neighborhood of an

fMRI sample, weighted by a function (the Lanczos kernel) of the temporal distance between

the stimulus and the sample. Mixed models with the same random effects structure as the

CDR models described above were fitted using the lme4 package. For the Canonical HRF

baseline, the model contains a single fixed and by-fROI random slope per predictor, since the

temporal modeling is implemented by the convolutional preprocess. For the Interpolated,

Averaged, and Lanczos baselines, fourth-order FIR models are applied with fixed and by-

fROI random slopes for the four TR’s preceding an fMRI sample. These FIR kernels

implement a discretized version of the HRF and estimate its (non-parametric) shape from

data.

16Source code for this technique is available at https://github.com/HuthLab/speechmodeltutorial.
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Figure 4.17: Natural Stories fMRI: HRF estimates using Gaussian vs. sinh-arcsinh error
distributions and various hemodynamic response kernels.

4.3.3 Results and Discussion

Figure 4.17 shows plots of all CDR estimates on fMRI. As in synthetic and reading experi-

ments, results are highly consistent across these dimensions. As in the reading data, sinh-

arcsinh substantially improves goodness of fit of modeled error distribution (Figure 4.18).

Models estimate 5-gram surprisal to have the largest influence on the language network’s

response, generally followed by rate and then by unigram surprisal. The sound power

predictor tends to be assigned a small-magnitude negative response.

Figure 4.17 shows that all models find estimates that closely resemble the canonical HRF,

and that these estimates do not change dramatically in the simplified reparameterizations

of the HRF. At the same time, some models deviate from the canonical HRF in noteworthy
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(y-axis) error distributions on the training set, using Gaussian vs. sinh-arcsinh error distri-
butions and various hemodynamic response kernels. The theoretical best-fit line is plotted
in red.
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Natural Stories fMRI
Model Train Expl Test

Canonical HRF 11.3548† 11.8263 † 11.5661 †

Interpolated 11.4236† 11.9888† 11.6654†

Averaged 11.3478 † 11.9280† 11.6090†

Lanczos 11.3536† 11.9059† 11.5871†

CDR-HRF1-MLE 11.3442 11.8729 —
CDR-HRF1-BBVI.imp 11.3442 11.8732 —

CDR-HRF1-BBVI 11.3469 11.8600 —
CDR-HRF2-MLE 11.3365 11.8551 —

CDR-HRF2-BBVI.imp 11.3365 11.8550 —
CDR-HRF2-BBVI 11.3386 11.8410 —
CDR-HRF3-MLE 11.2810 11.7131 —

CDR-HRF3-BBVI.imp 11.2809 11.7126 —
CDR-HRF3-BBVI 11.2840 11.7058 —
CDR-HRF4-MLE 11.2758 11.7033 —

CDR-HRF4-BBVI.imp 11.2757 11.7034 —
CDR-HRF4-BBVI 11.2808 11.7002 —
CDR-HRF5-MLE 11.2730 11.6956 —

CDR-HRF5-BBVI.imp 11.2730 11.6956 —
CDR-HRF5-BBVI 11.2774 11.6928 11.5369

CDR-LCG-MLE 11.2585 11.6819 —
CDR-LCG-BBVI.imp 11.2607 11.6861 —

CDR-LCG-BBVI 11.2762 11.7023 —

Table 4.8: Natural Stories fMRI. CDR vs. baselines, mean-squared error. CDR results
shown using 1-, 2-, 3-, 4-, and 5-parameter double-gamma hemodynamic response kernels,
along with non-parametric LCG response kernels, fitted using MLE, BBVI improper, and
BBVI. Best-performing models within the sets of baseline and CDR models are shown in
italics. Best-performing overall models are shown in bold. Daggers (†) indicate convergence
failures.

Permutation test Binomial test
Baseline p Success rate p

Canonical HRF 4.0e-4*** 0.83 3.5e-5***
Interpolated 1.0e-4*** 1.0 1.5e-11***

Averaged 1.0e-4*** 1.0 1.5e-11***
Lanczos 1.0e-4*** 1.0 1.5e-11***

Table 4.9: fMRI data model comparison. Permutation tests of improvement from
CDR-G-BBVI over baselines, along with binomial tests of the probability of CDR models
improving over each baseline, aggregating over training and exploratory sets (those on which
all CDR models are evaluated).
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ways. First, more parameterized models (HRF3+, which allow tuning of the undershoot

amplitude c) tend to find a larger-magnitude undershoot component (the negative dip at the

tail of the response kernel) than that of the canonical HRF. The ability to tune c and thus

find deeper undershoots also corresponds to a striking improvement in both training and

generalization performance (see the drop in error from HRF2 to HRF3 shown in Table 4.8).

Second, the LCG model finds an early negative response consistent with prior evidence of

an “initial dip” in the HRF (Yacoub et al., 2001; Röther et al., 2002; Hu and Yacoub, 2012,

inter alia). Such a dip is outside the solution space of the parametric kernels used here and

could only be discovered by LCG.

These findings have several implications. First, they reassuringly show that CDR models

discover patterns that resemble the canonical HRF and are thus consistent with decades of

prior research on the hemodynamic response, even using kernels with highly unconstrained

solution spaces (LCG). Second they bear on prior concerns that the hemodynamic response

is neither strictly stationary (Logothetis, 2003) nor strictly additive (Friston et al., 1998b,

2000), possibly undermining the usefulness of fMRI measures from long-running natural-

istic exposures where confounds from e.g. response saturation might be more pronounced

(Lindquist et al., 2009). These results are reassuring for naturalistic fMRI modeling since

they directly support the hypothesis that the double-gamma shape continues to characterize

the HRF not only in short constructed sensory experiments where it is typically studied,

but also in long-running naturalistic experiments using indicators of high-level cognitive

processes like language comprehension. Third, the deeper undershoot components and bet-

ter fits obtained using more heavily parameterized models suggest that the canonical HRF

may underestimate the size of the undershoot in the functional language network during

naturalistic sentence comprehension, although further experiments would be needed to bear

this out more convincingly.

Table 4.8 compares the performance of CDR against that of the baselines described

in §4.3.2. As shown, among the baseline models, pre-convolution with the canonical HRF
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performs quite well in terms of both in-sample and out-of-sample error (achieving the best

generalization performance of any baseline model), despite its reduced number of parameters

and its inability to adapt the HRF to the data. However, CDR generally outperforms all

baselines on all datasets. This indicates that CDR constitutes a substantial improvement

over existing methods for modeling fMRI data in naturalistic experiments.

CDR-HRF5-BBVI is selected as the representative CDR model for the fMRI dataset

because it is the most flexible and best-performing of the BBVI parametric models explored

here. CDR-HRF5-BBVI generalization performance on the test set is compared to that of

all baseline models.17 As shown in Table 4.8, CDR-HRF5-BBVI outperforms all baselines

on the test set, and as shown in the Permutation test column of Table 4.9, this performance

improvement is significant. As in Experiment A, the combined training and development

set results from all CDR models are compared against each baseline, using a binomial test

of the success rate (rate at which any CDR model outperforms a baseline model). As shown

in Table 4.9, the CDR success rate over each baseline is significantly greater than chance,

indicating that CDR models generally achieve better in-sample and out-of-sample error

than any of the baselines, even without careful tuning on an exploratory set.

4.4 Hypothesis Testing

This section compares null hypothesis significance testing (NHST) methods using CDR

models on a familiar result from psycholinguistics: surprisal effects in human sentence pro-

cessing, which have been argued to support the existence of a predictive coding component

of the language comprehension architecture that generates expectations about upcoming

words (Demberg and Keller, 2008; Frank and Bod, 2011; Smith and Levy, 2013). In par-

ticular, this section concerns statistical tests of CDR estimates of 5-gram surprisal against

the null hypothesis of no effect. One possible approach is a credible intervals test, checking

17The choice of BBVI for this analysis is motivated in §3.7.4.
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whether Monte-Carlo-estimated 95% credible intervals of the effect size (§3.2) in CDR for

5-gram surprisal include zero, which implements NHST at a 0.05 level of significance. This

test rejects the null hypothesis for all comparisons, as shown in Table 4.10, where the upper

and lower bounds on the 95% credible interval for the effect estimate g′ are always positive.

However, as argued in §3.6, such a test is anticonservative in a CDR setting because of

non-convexity, since the credible interval estimates only consider the local neighborhood

of the mode to which the model has converged. Furthermore, such single-model tests are

viewed with increasing skepticism in psycholinguistics because they are influenced by multi-

collinearity, leading many researchers to favor ablative model comparisons against a baseline

in which the fixed effect of interest is removed (Frank and Bod, 2011). Finally, in-sample

tests such as a credible intervals test or a likelihood ratio test evaluate on the training data

and are therefore unable to directly diagnose overfitting. This limitation can be addressed

by the use of non-parametric out-of-sample tests, such as the paired permutation test.

For the purposes of this hypothesis testing demonstration, three testing paradigms (dis-

cussed in §3.6) are applied against the null hypothesis of no effect for 5-gram surprisal in

each of the datasets explored above:

1. Direct PT: Ablative held-out paired permutation test (PT) of CDR models with

and without a fixed effect for 5-gram surprisal.18

2. 2-step LRT: Ablative likelihood ratio test (LRT) of LME models with and without a

fixed effect for 5-gram surprisal, with models fitted to the training set using predictors

convolved using the full CDR model.

3. 2-step PT: Ablative held-out paired permutation test of LME models with and

without a fixed effect for 5-gram surprisal, with models fitted to the training set using

18Tests are based on out-of-sample likelihood rather than mean-squared error to enable consistent ap-
plication to models with asymmetric error distributions, since the latter do not optimize mean squared
error.
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predictors convolved using the full CDR model. Tests are based on out-of-sample

mean squared error.

The key difference between the direct and 2-step approaches is that the 2-step tests use

LME to estimate globally optimal intercepts and linear coefficients on the convolved data.

The key difference between the LRT and PT approaches to 2-step testing is that PT is

a non-parametric evaluation on out-of-sample data, while LRT is a parametric evaluation

on in-sample data under asymptotic guarantees about the distribution of the likelihood

ratio statistic (Wilks, 1938). In order to avoid evaluating multiple CDR models on the test

set, tests use the same BBVI-estimated CDR models that were selected in the previously

reported baseline comparisons (BBVI inference, shifted gamma kernels for reading data and

HRF5 kernels for fMRI data). LME models in 2-step LRT tests are fitted to data convolved

using the full CDR model as a preprocess (see §3.6 for details). To facilitate convergence,

the LME structure is simplified by using uncorrelated random intercepts and slopes (Bates

et al., 2015). Since these analyses are primarily for demonstration purposes, they seek

uniformity within testing procedures across datasets, and no further steps are taken to

address LME convergence problems in 2-step tests, although in practice it is recommended

to simplify LME models until convergence is obtained before using them in scientific tests

(Barr et al., 2013). Out-of-sample permutation tests use likelihood difference (direct PT)

or mean squared error difference (2-step PT) as the test statistic. The exploratory and test

sets in each corpus are joined to create the PT evaluation set.
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Results are shown in Table 4.10. The p-values of 1.0 observed in some cells indicate that

the ablated model outperformed the full model on the evaluation set. Despite the use of

simpler LME models with uncorrelated random intercepts and slopes, convergence failures

affect the 2-step results for the linear response (ms) models of Natural Stories and Dundee.

The 2-step LRT test is the least conservative, rejecting the null (and supporting the

existence of surprisal effects) in all models. This is unsurprising both because the likelihood

ratio test is maximally powerful (Neyman and Pearson, 1933) and because it is in-sample

and therefore unable to directly account for external validity, unlike PT, which is based on

generalization quality. Generalization-based tests like PT are arguably more likely to favor

replicable findings than in-sample tests like LRT, since an effect that is significant by LRT

on the training data but does not generalize to a different sample is of limited scientific

interest. The direct PT test rejects the null for all models except Natural Stories (ms),

where ablated models outperform the full model. Further exploration of this exception

is left to future research. Nonetheless, direct PT results overall support the existence of

surprisal effects on all three kinds of experimental measures considered here. The 2-step

PT test appears to be the most conservative of the testing procedures evaluated here, only

rejecting the null for two out of five comparisons. These results suggest that LME models

fitted to CDR-convolved data generalize less well than the underlying CDR model itself. In

light of this finding and the evidence from §3.6 that CDR-estimated coefficients are near

globally optimal, the added complexity of the 2-step approach may be of limited value.

In sum, using multiple testing procedures, CDR models generally reveal evidence for

surprisal effects across all datasets considered here. Although all three procedures described

here are appropriate for testing scientific hypotheses, the direct test may be a reasonable

default because of its simplicity and in light of the combined evidence that (1) CDR-

estimated coefficients are near-optimal (§3.6), (2) LME models in 2-step tests are prone to

convergence problems, and (3) LME estimates in 2-step PT tend to generalize less well than

CDR estimates.
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4.5 General Recommendations

The foregoing results suggest certain empirically-motivated best practices for future CDR

analyses of psycholinguistic time series. These best practices are used as defaults in the CDR

implementation proposed here, although they can easily be overridden on a model-by-model

basis as motivated by the experimental design.

Inference type: BBVI. Of the three inference types examined here (MLE, BBVI-

improper, and BBVI), results show that BBVI tends to converge more quickly (§3.7.4). As

shown in §4.1, they also tend to yield more conservative estimates of uncertainty. For these

reasons, I suggest BBVI inference as a general default. MLE and BBVI-improper inference

modes are still useful for sanity checking and sometimes obtain better error.

Kernel type: parametric. Results show a strong tendency for low-dimensional para-

metric response kernels to perform at least as well as high-dimensional LCG kernels in terms

of synthetic IRF recovery and generalization error. Furthermore, depending on compute

architecture, LCG kernels can be many times slower per iteration than parametric ones,

in part because they contain many more parameters (Table 4.1). At the same time, over-

constrained kernels can lead to high model bias (see e.g. exponential kernels fitted to shifted

gamma responses in Simulation D). For this reason, I recommend the use of parametric

kernels for research purposes whenever possible (i.e. whenever domain knowledge suggests

a parametric kernel that covers the space of plausible solutions), although sanity checking

the results against LCG estimates can be a useful step for datasets rich enough to support

discovery of LCG models.

Convergence criterion: time-loss correlation. I have proposed and applied a CDR

convergence criterion based on statistical tests for non-decreasing loss. All parametric CDR

models in this study met this criterion within a reasonable number of training iterations,

suggesting that it is robust and scale-independent, as argued in §3.7.2.19 The use of a

19While the criterion is robust to the scale of the loss, it is sensitive to low-level training parameters like
the learning rate, optimizer, and batch size. For example, the 500-iteration window used for convergence
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reliable automatic stopping criterion reduces the number of experimenter degrees of freedom

by eliminating the need for researchers to decide when model training has completed.

diagnosis in these experiments may lead to unnecessarily long training times at smaller batch sizes or learning
rates. Users who manipulate these optimization settings should also revisit the convergence parameters in
order to ensure that they are still appropriate.

131



Part III

Studying Human Language

Processing with CDR
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Chapter 5

Word Frequency and Predictability in Reading

This chapter applies CDR to answer the question: are there distinct effects of a word’s

frequency versus predictability in human sentence comprehension? Recent evidence impli-

cates prediction as a major organizing principle in cognition (Bubic et al., 2010; Singer

et al., 2018; Keller and Mrsic-Flogel, 2018), and psycholinguists have long studied the role

of prediction in human sentence processing and its relation to other comprehension mecha-

nisms (Marslen-Wilson, 1975; Kutas and Hillyard, 1984; MacDonald et al., 1994; Tanenhaus

et al., 1995; Hale, 2001; Norris, 2006; Levy, 2008; Frank and Bod, 2011). Some prominent

theories of word recognition claim that ease of lexical access is modulated by the strength

of a word’s representation in memory, independently of contextual factors that guide pre-

diction (Seidenberg and McClelland, 1989; Coltheart et al., 2001; Harm and Seidenberg,

2004). Other theories hold that apparent effects of frequency are underlyingly effects of

predictability (Norris, 2006; Levy, 2008; Rasmussen and Schuler, 2018).

A number of studies using constructed stimuli that factorially manipulate word fre-

quency and predictability have found separable additive effects of each, suggesting distinct

influences on lexical processing (see Staub, 2015 for a review). This study examines the

generalizability of these findings to typical sentence comprehension by searching for sepa-

rable effects of frequency and n-gram predictability using CDR models fitted to three large

naturalistic reading corpora: Natural Stories (Futrell et al., 2020), Dundee (Kennedy et al.,

2003), and UCL (Frank et al., 2013). While results show evidence of both frequency and

predictability effects in isolation, they show no effect of frequency over predictability and

thus do not support the existence of separable effects. They are instead consistent with
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either (1) an account of apparent frequency effects as epiphenomena of predictive process-

ing (Norris, 2006; Levy, 2008) or (2) a more circumscribed role for frequency effects in

naturalistic reading than constructed experiments suggest.

5.1 Background and Related Work

5.1.1 Frequency and Predictability in Human Sentence Processing

It has long been recognized that low-frequency words are harder to process (Inhoff and

Rayner, 1986). For example, in a neutral context, the more frequent bottle should on

average be processed more quickly than the less frequent kettle:

I have a bottle. (5.1)

I have a kettle. (5.2)

However, context can dramatically alter these patterns by changing words’ predictability

(Ehrlich and Rayner, 1981):

the pot calling the bottle black (5.3)

the pot calling the kettle black (5.4)

Some models of word recognition (Seidenberg and McClelland, 1989; Coltheart et al.,

2001; Harm and Seidenberg, 2004) posit a context-independent lexical retrieval mechanism,

distinct from any mechanisms for predictive coding, with processing cost proportional to the

strength of a word’s representation in memory (a function of lexical frequency). Such a view

predicts separable effects of frequency and predictability in human language comprehension.

Other models (Hale, 2001; Norris, 2006; Levy, 2008; Rasmussen and Schuler, 2018) posit no

such context-independent retrieval mechanism, and instead propose a unified comprehension
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mechanism that incrementally reallocates resources between possible interpretations of the

unfolding sentence, with processing cost proportional to the amount of information (resource

reallocation) contributed by each new word. Such a view predicts no separable effects of

frequency and predictability because lexical frequencies are subsumed into the incremental

probability model.

Consistently with the first hypothesis, previous studies have shown separable additive

effects of frequency and predictability by factorially manipulating corpus frequency and

cloze predictability (Rayner et al., 2004a; Ashby et al., 2005; Gollan et al., 2011; Staub and

Benatar, 2013, see Staub, 2015 for a review). However, cloze estimates poorly distinguish

degrees of low contextual probability (Smith and Levy, 2013), and constructed stimuli, while

affording direct control over linguistic variables, may fail to reflect the typical distributional

characteristics of the language, lack context, and/or inadvertently trigger suspension of

the usual processes of pragmatic inference due to the absence of an overarching discourse

(Demberg and Keller, 2008; Hasson and Honey, 2012; Shain et al., 2018). It is therefore not

yet clear whether frequency and predictability effects can be separated in a more realistic

setting.

5.1.2 The Naturalistic Experimental Paradigm

As discussed in §2.1.3, concerns about the ecological validity of constructed stimuli can

be addressed by the use of naturalistic stimuli (e.g. stories, newspaper articles, persua-

sive pieces, etc.). Naturalistic experiments are therefore an important complement to con-

structed experiments in the study of cognitive processes (Hasson and Honey, 2012).

However, naturalistic experiments introduce their own challenges. Without the ability

to factorially manipulate frequency and predictability, naturalistic studies must confront

the natural collinearity between these two variables in ordinary language (Demberg and

Keller, 2008). Furthermore, because naturalistic stimuli do not define a critical region of

the stimulus, responses are generally modeled word-by-word (Demberg and Keller, 2008;
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Effect estimate (log-ms)
Corpus SentPos Trial Rate WordLen SaccLen PrevFix Unigram 5-gram

Natural Stories 0.0098 -0.0216 -0.3069 — — 0.0158 -0.0018 0.0174
Dundee -0.0085 -0.0052 -0.0277 0.0068 -0.0021 -0.0178 -0.0067 0.0117

UCL 0.0524 -0.1330 0.0023 0.0221 0.0778 0.0005 0.0184

Table 5.1: Effect estimates in log-ms by corpus, computed as the IRF integral over the
longest time offset seen in training. Following psycholinguistic convention, unigrams and
5-grams have opposite sign (log prob vs. surprisal). In UCL, sentence position and trial are
identical (sentences were shuffled).

Frank and Bod, 2011; Smith and Levy, 2013; van Schijndel and Schuler, 2015). It is standard

psycholinguistic practice to do so through ablative likelihood ratio testing (LRT) of linear

mixed effects regression (LMER) models (Bates et al., 2015) fitted to the dependent variable

of interest (e.g. fixation duration) (Demberg and Keller, 2008; Frank and Bod, 2011; van

Schijndel and Schuler, 2015; Shain et al., 2016). However, this approach has important

disadvantages. First, delayed effects in human sentence processing can have a severe impact

on results obtained using this approach (Chapter 2). Second, LRT implicitly evaluates on

in-sample data, making it challenging to diagnose overfitting and to assess external validity

(Vasishth et al., 2018). This can be addressed through out-of-sample non-parametric tests,

such as those explored in §4.4.

5.2 Experimental Setup

This study seeks to complement constructed stimulus experiments by searching for separable

effects of frequency and predictability during naturalistic reading, using methods designed

to address the challenges of Section 5.1.2. The problem of temporal diffusion is addressed

by using CDR models rather than LMER. The problem of external validity is addressed by

using held-out paired permutation testing rather than LRT, thus basing the hypothesis test

directly on generalization error. The possibility that cloze probabilities are poor estimates

of predictability for low-frequency words is addressed by operationalizing predictability as

5-gram surprisal generated by a large-vocabulary statistical language model. The natural
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Corpus ρ
Natural Stories -0.78

Dundee -0.73
UCL -0.74

Table 5.2: Pearson’s correlation between 5-gram surprisal and unigram log probability by
corpus.

Corpus
Comparison Pooled Natural Stories Dundee UCL

5-gram only vs. baseline 0.0001*** 0.0001*** 0.0001*** 0.0001***
Unigram only vs. baseline 0.0001*** 0.0001*** 0.0001*** 0.0001***

5-gram + Unigram vs. Unigram-only 0.0001*** 0.0001*** 0.0626 0.0006***
5-gram + Unigram vs. 5-gram-only 0.1515 0.1831 0.0105 0.1491

Table 5.3: Held-out paired permutation testing results, both pooled (left) and by corpus
(right).

collinearity of frequency and predictability is addressed through the use of large-scale data

that should permit subtle differentiation of collinear effects. Taken together, the corpora

examined in this study contain over one million fixations generated by 243 human subjects.

Although there is a large-magnitude correlation between unigram log probability (frequency)

and 5-gram surprisal (predictability) in these corpora, as shown in Table 5.2, synthetic

experiments show that CDR can faithfully identify models from much smaller data than

that used here, even when all predictors are correlated at the 0.75 level (Chapter 4). Given

the size of the data, failure to distinguish effects of frequency and predictability would raise

doubts about the existence of such a separation in naturalistic reading.

5.2.1 Statistical Procedure

CDR models are fitted separately to each of the Natural Stories (Futrell et al., 2018),

Dundee (Kennedy et al., 2003), and UCL (Frank et al., 2013) corpora.1

1 Natural Stories is a self-paced reading corpus containing 848,768 word fixations from 181 subjects read-
ing narrative and informational texts. Dundee is an eye-tracking corpus containing 260,065 word fixations
from 10 subjects reading newspaper editorials. UCL is an eye-tracking corpus containing 53,070 fixations
from 42 subjects reading sentences taken from novels by amateur authors. Although the sentences in UCL
were randomized and presented in isolation — and therefore subject to some of the concerns about con-
structed stimuli raised in Section 5.1 — they are included here because the stimuli are naturally occurring
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CDR Models used variational inference to fit the means and variances of independent

normal posterior distributions over all model parameters assuming an improper uniform

prior. Convolved predictors used the three-parameter ShiftedGamma impulse response

function (IRF) kernel:

f(x;α, β, δ) =
βα(x− δ)α−1e−β(x−δ)

Γ(α)
(5.5)

Posterior means for the IRF parameters were initialized at α = 2, β = 5, and δ = −0.2,

which defines a decreasing IRF with peak centered at t = 0 that decays to near-zero within

about 1s. Models were fitted using the Adam optimizer (Kingma and Ba, 2014) with

Nesterov momentum (Nesterov, 1983; Dozat, 2016), a constant learning rate of 0.01, and

minibatches of size 1024. For computational efficiency, histories were truncated at 128

timesteps. Prediction from the network used an exponential moving average of parameter

iterates with a decay rate of 0.999, and models were evaluated using maximum a posteriori

estimates obtained by setting all parameters to their posterior means.2 Convergence was

visually diagnosed.

Following previous investigations of this question (Rayner et al., 2004a; Ashby et al.,

2005; Gollan et al., 2011, inter alia), frequency is estimated from corpus statistics — in

this case, KenLM (Heafield et al., 2013) unigram models trained on the Gigaword 3 corpus

(Graff and Cieri, 2003). Unlike previous studies using close estimates of predictability

(Rayner et al., 2004a; Ashby et al., 2005; Gollan et al., 2011, inter alia), predictability is

statistically estimated, again using KenLM models (5-gram) trained on Gigaword 3. This

is both because (1) cloze norming all words contained in thousands of naturalistic sentences

is prohibitive and (2) statistical language models trained on large data can more reliably

differentiate low probability continuations (Smith and Levy, 2013). Following recent work on

rather than constructed for a particular experimental purpose. The UCL results replicate the overall pattern
of significance (Table 5.3), and excluding them has no impact on the overall results.

2Since all parameters have independent normal distributions in the variational posterior, the law of large
numbers guarantees that samples from the posterior converge in probability to the posterior mean.
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prediction effects in naturalistic sentence comprehension (Demberg and Keller, 2008; Frank

and Bod, 2011; Smith and Levy, 2013), predictability estimates are encoded as surprisal by

negating the 5-gram log probabilities.

ShiftedGamma impulse response functions are assumed for each of these variables, as

well as for the nuisance variables word length, saccade length and an indicator variable for

whether the previous word was fixated.3 To capture trends in the response at different

timescales, the models also include linear effects for the word’s index in the sentence (sen-

tence position) and document (trial). In addition to the intercept, the models contain a

convolved intercept (rate) designed to capture effects of stimulus timing. The response

used in all corpora is log fixation duration (go-past for eye-tracking).4 Outlier filtering is

performed in each corpus following the procedures described in Chapter 4.

Approximately half the data in each corpus is used for training, with the remaining half

reserved for held-out evaluation. Models include by-subject random intercepts as well as

by-subject random slopes and impulse response parameters for each predictor.5 Held-out

hypothesis testing uses a “diamond” ablative structure first ablating fixed effects for 5-gram

surprisal and unigram log probability individually and then ablating both. All random ef-

fects are retained in all models. Comparisons use paired permutation tests of the by-item

losses on the evaluation set, pooling across all corpora.6 Note that the non-parametric per-

mutation test permits this pooling procedure to unify the models from all three corpora into

a single test, since (unlike LRT) permutation testing supports out-of-sample comparison.

Data processing was performed using the ModelBlocks toolchain (van Schijndel and Schuler,

2013), available at https://github.com/modelblocks/modelblocks-release. Model fit-

ting was performed using the CDR software library (https://github.com/coryshain/

3The variables saccade length and previous was fixated are only used for eye-tracking since they are not
relevant to self-paced reading.

4The overall pattern of significance does not change when first-pass durations are used.
5By-word random intercepts are not included because of their potential to subsume frequency effects.
6To correct for different error variances, errors are rescaled by the joint standard deviation of the errors

from the full and ablated models by corpus.
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Figure 5.1: IRF estimates by corpus

cdr). See the citations above for data access instructions.

5.3 Results

Estimated impulse response shapes by corpus are plotted in Figures 5.1a–5.1c. Plotted

curves describe the estimated change in the response t seconds after having observed a unit

impulse of each predictor. For example, in the Dundee estimates, observing a word with one

standard deviation of 5-gram surprisal (red curve) is expected to increase reading time by

about 0.04 log-ms instantaneously, and by about 0.01 log-ms at a subsequent word observed

0.5s later. Positive IRFs (curves above 0) mean that predictors are estimated to increase

reading time (and, by assumption, comprehension difficulty), and negative IRFs (curves

below 0) mean that predictors are estimated to decrease reading time. For more detailed

psycholinguistic interpretation of IRF estimates like these, see Chapter 4.

Overall effect estimates from the full models are presented in Table 5.1 and pooled

statistical comparisons are presented in the Pooled column of Table 5.3. If predictability

and frequency effects are additive, all four comparisons in Table 5.3 should be significant. As

shown, this is not the case. There is evidence that both frequency (unigram log probability)

and predictability (5-gram surprisal) in isolation reliably index processing difficulty, as

shown by the significance of both effects over the baseline. However, when the effects are
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compared to each other, predictability explains significantly more variance than frequency

but not vice versa.

This general pattern of results further obtains for each corpus individually, as shown by

the Corpus column breakdown in Table 5.3. One minor exception is that neither predictabil-

ity nor frequency improves significantly over the other in Dundee.7 The Dundee results are

nevertheless consistent with an interpretation in which frequency and predictability do not

index distinct processing phenomena and inconsistent with an interpretation in which they

do. These results thus provide no evidence of separable frequency and predictability effects,

whether the corpora are considered together or individually.

5.4 Discussion

As described in Section 5.3, results show no evidence of separable effects of frequency and

predictability in naturalistic reading. One possible explanation for this outcome is that 5-

gram surprisal tracks human prediction effort better than cloze probabilities, in part because

cloze probabilities are less reliable for infrequent words. Although countervailing evidence

exists in the literature (e.g. Smith and Levy, 2011 found effects of cloze but not n-gram

probabilities in human reading times), in general this evidence is based on weak statistical

competitors to cloze (e.g. Smith and Levy, 2011 used tri-grams). By contrast, recent trends

in cognitive modeling point toward a correlation between the linguistic and psycholinguistic

performance of language models, such that more powerful models with lower perplexity also

tend to correlate more strongly with measures of cognitive effort (Goodkind and Bicknell,

2018; van Schijndel and Linzen, 2018). This suggests that apparent frequency effects may

arise in part from poor estimates of predictability. Note that by using 5-gram surprisal

rather than more powerful neural language models (Jozefowicz et al., 2016), the analysis

described in this study is conservative in its attribution of variance to predictability. The

7The p-value of 0.0105 observed for frequency over predictability does not achieve significance at the 0.05
level under 6-way Bonferroni correction (2 variables × 3 corpora).
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failure of frequency is thus all the more compelling, since replacing 5-gram surprisal with

surprisals obtained from more powerful language models would be unlikely to increase the

explanatory power of frequency.

Another potential explanation for the lack of separable effects of frequency and pre-

dictability is the use of naturalistic rather than constructed stimuli. Neuroscientific evi-

dence shows that domain-general executive control regions activate during the processing

of some artificially constructed language stimuli (Kaan and Swaab, 2002; Kuperberg et al.,

2003; Novick et al., 2005; January et al., 2009) but fail to activate during the processing of

naturalistic stimuli (Blank and Fedorenko, 2017). Such results have led some to argue that

artificially constructed experimental stimuli may increase general cognitive load by coercing

comprehension into problem solving, thereby engaging mechanisms that play little role in

everyday sentence processing (Campbell and Tyler, 2018, Wehbe et al., in prep; Diashek et

al., in prep). It is possible that the language comprehension mechanisms that implement

linguistic prediction (Chapter 6) are relatively less engaged while domain general execu-

tive control mechanisms are relatively more engaged during the processing of constructed

stimuli presented without context, perhaps suppressing the influence of preceding words

on participants’ reading behavior. Further investigation is needed in order to explore this

hypothesis.

In any case, it is a statistical truism that negative results do not motivate acceptance of

the null hypothesis. Thus, it is possible that frequency effects exist in naturalistic reading

but are too small to be detected here. Nevertheless, the failure to find frequency effects

in large naturalistic data indicates that any such effects are greatly attenuated in the pro-

cessing of naturalistic texts in comparison to the processing of constructed stimuli, which

circumscribes the importance that any such effects might have in driving comprehension

effort during typical reading.
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5.5 Conclusion

This chapter explored whether effects of word frequency and predictability are distinguish-

able in naturalistic sentence processing. Despite the size of the combined dataset, results

showed no evidence of separable effects in naturalistic reading, contrary to previous find-

ings of separable effects in studies using constructed stimuli. This investigation thus shows

no evidence of a distinct, context-independent lexical retrieval mechanism modulated by

strength of memory representation (Seidenberg and McClelland, 1989; Coltheart et al.,

2001; Harm and Seidenberg, 2004), and instead favors a view in which sentence processing

effort is driven by a mechanism that incrementally reallocates resources between competing

interpretations, subsuming any effects of raw lexical frequency (Norris, 2006; Levy, 2008;

Rasmussen and Schuler, 2018). The discrepancy between constructed and naturalistic ex-

perimental settings presents a puzzle for our understanding of the mental processes that

underlie human language comprehension, and is perhaps linked to recent evidence that ar-

tificially constructed linguistic stimuli can spuriously engage non-linguistic executive mech-

anisms by increasing general cognitive load as compared to naturalistic settings (Blank and

Fedorenko, 2017; Campbell and Tyler, 2018). Further investigation into the precise sources

of the discrepancy may shed new light on the interplay between prediction and memory in

human sentence processing.

143



Chapter 6

fMRI Evidence of Domain-Specific, Structure-Sensitive

Prediction During Naturalistic Language Processing

This study uses CDR to probe the role of prediction in brain responses to naturalistic lan-

guage stimuli. In the domain of language comprehension, various results show that listeners

and readers actively predict upcoming words and structures (e.g. Kutas and Hillyard, 1984;

MacDonald et al., 1994; Tanenhaus et al., 1995; Rayner et al., 2004a; Frank and Bod, 2011;

Smith and Levy, 2011, 2013; Staub and Benatar, 2013; Frank et al., 2015; Kuperberg and

Jaeger, 2016). However, the cognitive and neural mechanisms that support predictive lan-

guage processing are not well understood. Under one widely held view, predictive language

processing is implemented by domain-general executive (inhibitory control and working

memory) resources. This perspective receives support from numerous studies showing that

prediction effects during language comprehension are absent or less pronounced for popula-

tions with reduced executive resources, such as children, older individuals, and non-native

speakers (e.g. Federmeier et al., 2002; Federmeier and Kutas, 2005; Dagerman et al., 2006;

Federmeier et al., 2010; Mani and Huettig, 2012; Wlotko and Federmeier, 2012; Martin

et al., 2013; Kaan, 2014; Mitsugi and MacWhinney, 2016; Gambi et al., 2018; Payne and

Federmeier, 2018, cf. Dave et al., 2018; Havron et al., 2019). Furthermore, several neu-

roimaging studies have reported sensitivity to linguistic manipulations in what appear to

be cortical regions thought to support domain-general executive function (e.g. Kaan and

Swaab, 2002; Kuperberg et al., 2003; Novick et al., 2005; Rodd et al., 2005; Novais-Santos

et al., 2007; January et al., 2009; Peelle et al., 2009; Rogalsky and Hickok, 2011; Nieuwland

et al., 2012; Wild et al., 2012; McMillan et al., 2012, 2013), suggesting that such regions
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may also be implicated in language processing, including perhaps prediction. These results

have led some to conclude that predictive coding for language is implemented by domain-

general executive control resources (Linck et al., 2014; Huettig and Mani, 2016; Pickering

and Gambi, 2018; Strijkers et al., 2019).

However, this interpretation is subject to several objections. First, most prior work on

linguistic prediction has relied on behavioral and electrophysiological measures which are

well suited for identifying global response patterns but cannot spatially localize the source

of these effects in the brain to a certain functional region or network (Mather et al., 2013,

e.g.). Second, the (alleged) between-population differences in prediction noted above are

consistent with accounts that do not directly invoke executive resources, including (1) pos-

sible qualitative differences between populations in the kind of information that is being

predicted and the consequent need for population-specific norms to detect prediction effects,

or (2) differences in how often predictions are correct, which may modulate the likelihood

of engaging in predictive behavior (Ryskin et al., 2020). And third, past studies that did

employ neuroimaging tools with high spatial resolution and consequently reported linguis-

tic prediction responses — typically neural response increases for violations of linguistic

structure — localized to executive control regions (e.g. Newman et al., 2001; Kuperberg

et al., 2003; Nieuwland et al., 2012; Schuster et al., 2016) may have been influenced by

task artifacts; indeed, some have argued that artificially constructed laboratory stimuli and

tasks increase general cognitive load in comparison to naturalistic language comprehension

(e.g. Blanco-Elorrieta and Pylkkänen, 2017; Blank and Fedorenko, 2017; Campbell and

Tyler, 2018; Wehbe et al., 2020; Diachek et al., 2020). To ensure that findings from the

laboratory paradigms truly reflect the cognitive phenomenon of interest, it is important to

validate them in more naturalistic experimental settings that better approximate the typ-

ical conditions of human sentence comprehension (Hasson and Honey, 2012; Hasson et al.,

2018).

Despite the growing number of fMRI studies of naturalistic language comprehension
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(e.g. Speer et al., 2007; Yarkoni et al., 2008; Speer et al., 2009; Whitney et al., 2009; Wehbe

et al., 2014; Hale et al., 2015; Henderson et al., 2015; Huth et al., 2016; Sood and Sereno,

2016; Brennan, 2016; Desai et al., 2016; de Heer et al., 2017; Dehghani et al., 2017; Bhat-

tasali et al., 2018), only a handful have directly investigated effects of word predictability

(Willems et al., 2015; Brennan et al., 2016; Henderson et al., 2016; Lopopolo et al., 2017),

a well-established predictor of behavioral measures in naturalistic language comprehension

(Demberg and Keller, 2008; Frank and Bod, 2011; Smith and Levy, 2013; van Schijndel and

Schuler, 2015). These previous naturalistic studies of linguistic prediction effects in the brain

using estimates of prediction effort such as surprisal (Hale, 2001; Levy, 2008), the negative

log probability of a word given its context, or entropy (Hale, 2006), an information-theoretic

measure of the degree of constraint placed by the context on upcoming words have yielded

mixed results on the existence, type, and functional location of such effects. For example, of

the lexicalized and unlexicalized (part-of-speech) bigram and trigram models of word sur-

prisal explored in Brennan et al. (2016), only part-of-speech bigrams positively modulated

neural responses in most regions of the functionally localized language network. Lexical-

ized bi- and trigrams and part-of-speech trigrams yielded generally null or negative results

(16 out of 18 comparisons). By contrast, Willems et al. (2015) found lexicalized trigram

effects in regions typically associated with language processing (e.g., anterior and posterior

temporal lobe). In addition, Willems et al. (2015) and Lopopolo et al. (2017) found predic-

tion effects in regions that are unlikely to be specialized for language processing, including

(aggregating across both studies) the brain stem, amygdala, putamen, and hippocampus,

as well as in superior frontal areas more typically associated with domain-general executive

functions like self-awareness and coordination of the sensory system (Goldberg et al., 2006).

It is therefore not yet clear whether predictive coding for language relies on domain-general

mechanisms in addition to, or instead of, language-specific ones, especially in naturalistic

contexts.
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In addition to questions about the functional localization of linguistic prediction, sub-

stantial prior work has also investigated the structure of the predictive model, seeking to

shed light on the nature of linguistic representations in the mind. If effects from theoretical

constructs like hierarchical natural language syntax can be detected in online processing

measures, this would constitute evidence that such constructs are present in human mental

representations and used to comprehend language. This position is widely supported by

behavioral and electrophysiological experiments using constructed stimuli (see Lewis and

Phillips, 2015, for review) and by some behavioral (Roark et al., 2009; Fossum and Levy,

2012; van Schijndel and Schuler, 2015; Shain et al., 2016), electrophysiological (Brennan and

Hale, 2019) and neuroimaging (Brennan et al., 2016) experiments using naturalistic stimuli.

However, other naturalistic studies reported null or negative syntactic effects (Frank and

Bod, 2011; van Schijndel and Schuler, 2013, Chapter 2 contra Shain et al., 2016), or mixed

syntactic results within the same set of experiments (Demberg and Keller, 2008; Henderson

et al., 2016), leading some to argue that the representations used for language comprehen-

sion (in the absence of task artifacts from constructed stimuli) contain little hierarchical

structure (Frank and Bod, 2011; Frank et al., 2015; Frank and Christiansen, 2018). Fur-

thermore, the few naturalistic fMRI studies that have explored structural prediction effects

have yielded inconsistent localization of these effects. For example, Brennan et al. (2016)

found context-free grammar surprisal effects throughout the functional language network

except in inferior frontal gyrus, whereas inferior frontal gyrus is the only region in which

Henderson et al. (2016) found such effects.

The current study used fMRI to determine whether a signature of predictive coding

during language comprehension increased response to less predictable words, i.e. surprisal

(e.g. Smith and Levy, 2013) is primarily evident during naturalistic sentence processing in

(1) the domain-specific, fronto-temporal language (LANG) network (Fedorenko et al., 2011),

or (2) the domain-general, fronto-parietal multiple demand (MD) network (Duncan, 2010).

The MD network supports executive functions (e.g., inhibitory control, attentional selection,
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conflict resolution, maintenance and manipulation of task sets) across both linguistic and

non-linguistic tasks (e.g. Duncan and Owen, 2000; Fedorenko et al., 2013; Hugdahl et al.,

2015, for discussion, see: Fedorenko, 2014) and has been shown to be sensitive to surprising

events (Corbetta and Shulman, 2002).

On the one hand, given that the language network plausibly stores linguistic knowledge,

including the statistics of language input, it might directly carry out predictive process-

ing. Such a result would align with a growing body of cognitive neuroscience research

supporting prediction as a “canonical computation” (Keller and Mrsic-Flogel, 2018) locally

implemented in domain-specific circuits (Montague et al., 1996; Rao and Ballard, 1999;

Alink et al., 2010; Bubic et al., 2010; Bastos et al., 2012; Wacongne et al., 2011, 2012;

Singer et al., 2018). This hypothesis is also supported by prior findings of linguistic pre-

diction effects in portions of the language network (Bonhage et al., 2015; Willems et al.,

2015; Brennan et al., 2016; Henderson et al., 2016; Lopopolo et al., 2017; Matchin et al.,

2018). On the other hand, given that the MD network has been argued to encode predictive

signals across domains and relay them as feedback to other regions (Strange et al., 2005;

Cristescu et al., 2006; Egner et al., 2008; Wacongne et al., 2011; Chao et al., 2018), it might

be recruited to predict upcoming words and structures in language.

Prior fMRI studies using hand-constructed sentences to probe effects of linguistic ex-

pectation have not yielded a clear answer as to the mechanisms – language-specific vs.

domain-general – that support linguistic prediction. Numerous such studies have observed

responses in areas of the language network to manipulations of word predictability (Ku-

perberg et al., 2000; Baumgaertner et al., 2002; Kiehl et al., 2002; Friederici et al., 2003;

Gold et al., 2006; Obleser et al., 2007; Dien et al., 2008; Obleser and Kotz, 2009; Bonhage

et al., 2015; Schuster et al., 2016; Hartwigsen et al., 2017; Matchin et al., 2018; Schus-

ter et al., 2019). However, many studies have also reported linguistic prediction effects in

frontal, parietal, and cingulate cortical regions typically associated with the MD network

(Kuperberg et al., 2000; Baumgaertner et al., 2002; Gold et al., 2006; Bonhage et al., 2015;
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Hartwigsen et al., 2017), as well as in other parts of the brain like the fusiform gyrus (Ku-

perberg et al., 2000; Gold et al., 2006) and the cerebellum (Lesage et al., 2017). Although

it is certainly possible that predictive coding for language is carried out by both the LANG

and the MD networks, with additional contributions from other brain areas, it is impor-

tant to ensure that the foregoing results are not due to task artifacts induced by the use

of artificially constructed stimuli (see §6.3), through validation of these findings in more

naturalistic comprehension conditions (Hasson et al., 2018).

To distinguish the hypotheses above in a naturalistic comprehension paradigm, this

study searched for neural responses in LANG vs. MD regions to the contextual predictabil-

ity of words as estimated by two model implementations of surprisal: a surface-level 5-gram

model and a hierarchical probabilistic context-free grammar (PCFG) model. N -gram sur-

prisal estimates are sensitive to word co-occurrence patterns but are limited in their ability

to model hierarchical natural language syntax, since they contain no explicit representation

of grammatical categories or syntactic composition and have limited memory for preceding

words in the sentence (in the present study, up to four preceding words). PCFG surprisal

estimates, by contrast, are based on structured syntactic representations of the unfolding

sentence but do not directly encode surface-level word co-occurrence patterns. Correla-

tions between each of these measures and human neural responses would shed light on the

relative importance assigned to these two information sources (word co-occurrences and

syntactic structures) in computing predictions about upcoming words. Although surprisal

is not the only extant measure of linguistic prediction (others include PCFG entropy, Roark

et al., 2009; entropy reduction, Hale, 2006; and successor surprisal, Kliegl et al., 2006), sur-

prisal has received extensive consideration in the experimental literature (e.g. Demberg and

Keller, 2008; Frank and Bod, 2011; Fossum and Levy, 2012; Frank et al., 2015; van Schijndel

and Schuler, 2015; Brennan et al., 2016; Henderson et al., 2016; Brennan and Hale, 2019).

Related measures were not considered in order to avoid excessive statistical comparisons.

Note that the use of surprisal to estimate prediction effects implicitly assumes a notion

149



of linguistic prediction as a distributed pre-activation process, following e.g. Kuperberg and

Jaeger (2016), rather than as an all-or-nothing commitment to a specific upcoming word.

Thus, this study investigated the degree to which the statistics of the local lexical (n-gram)

and structural (PCFG) linguistic context modulate the sentence processing response, and

where in the brain this modulation occurs, leaving aside questions about the underlying

mechanisms by which these effects arise: e.g. the extent to which they are active or passive,

or the extent to which integrative structure-building operations (e.g. composing words into

syntactic constituents, constructing dependencies, etc.) underlie the observed facilitation

effects (Altmann, 1998; Hale, 2014). See §6.3 for elaboration on this point.

To avoid the problem of reverse inference from anatomy to function (Poldrack, 2006,

2011), the LANG and MD networks were functionally identified in each individual partic-

ipant using an independent localizer task (Saxe et al., 2006; Fedorenko et al., 2010), and

then the response of those functional regions to each estimate of surprisal was examined.

Results show significant independent effects of 5-gram and PCFG surprisal in LANG, but

no such effects in MD, as well as significant differences in surprisal effect sizes between the

two networks. This finding supports the hypothesis that predictive coding for language is

primarily carried out by language-specialized rather than domain-general cortical circuits

and exploits both surface-level and structural cues.

6.1 Materials and Methods

6.1.1 General Approach

Several features set the current study apart from prior cognitive neuroscience investigations

of linguistic prediction in naturalistic stimuli. First, this study used naturalistic language

stimuli rather than controlled stimuli constructed for a particular experimental goal. Natu-

ralistic stimuli improve ecological validity compared to isolated constructed stimuli, which

may introduce task artifacts that do not generalize to everyday cognition (Demberg and
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Keller, 2008; Hasson and Honey, 2012; Richlan et al., 2013; Schuster et al., 2016; Camp-

bell and Tyler, 2018), and prior work indicates that naturalistic stimuli yield more reliable

BOLD signals than artificial tasks (Hasson et al., 2010). Minimizing such artifacts is crucial

in studies of the MD network, which is highly sensitive to task variables (Miller and Cohen,

2001; Sreenivasan et al., 2014; D’Esposito and Postle, 2015; Diachek et al., 2020).

Second, this study used participant-specific functional localization to identify regions of

interest constituting the LANG and MD networks (Fedorenko et al., 2010). This approach

is crucial because many functional regions do not exhibit a consistent mapping onto macro-

anatomical landmarks (Frost and Goebel, 2012), especially in the frontal (Amunts et al.,

1999; Tomaiuolo et al., 1999), temporal (Jones and Powell, 1970; Gloor, 1997; Wise et al.,

2001) and parietal (Caspers et al., 2006, 2008; Scheperjans et al., 2008) lobes, which house

the language and MD networks. Due to this inconsistent functional-to-anatomical mapping,

a given stereotactic coordinate might belong to the language network in some participants

but to the MD network in others (Fedorenko et al., 2012; Blank et al., 2017; Fedorenko and

Blank, 2020). Such inter-individual variability severely compromises the validity of both

anatomical localization (Juch et al., 2005; Poldrack, 2006; Fischl et al., 2007; Frost and

Goebel, 2012; Tahmasebi et al., 2012) and group-based functional localization (Saxe et al.,

2006; Fedorenko and Kanwisher, 2009). In contrast, participant-specific functional localiza-

tion allows this study to pool data from a given functional region across participants even

in the absence of perfect anatomical alignment and is therefore better suited for the kind of

questions studied here (Nieto-Castañón and Fedorenko, 2012). Both networks probed here

have been extensively functionally characterized in prior work, so responses to linguistic

surprisal therein can be taken to index the engagement of linguistic processing mechanisms

vs. domain-general executive mechanisms (e.g. Mather et al., 2013).

Third, this study uses CDR to overcome the problems in hemodynamic response mod-

eling that are presented by naturalistic experiments. As discussed in Chapter 4, the vari-

able spacing of words in naturalistic language prevents direct application of discrete-time,
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data-driven techniques for hemodynamic response function (HRF) discovery, such as finite

impulse response modeling (FIR) or vector autoregression. Because CDR is a parametric

continuous-time deconvolutional method, it can infer the hemodynamic response directly

from naturalistic time series, without distortionary preprocessing steps such as predictor

interpolation (cf. e.g. Huth et al., 2016). Thus, unlike prior naturalistic fMRI studies of

prediction effects in language processing, the shape of the HRF is not assumed.

Fourth, unlike related studies, hypotheses were evaluated using non-parametric statis-

tical tests of model fit to held-out (out-of-sample) data, an approach which builds exter-

nal validity directly into the statistical test and should thereby improve replicability (e.g.

Demšar, 2006).

Finally, to my knowledge, this is the largest fMRI investigation to date (78 subjects) of

prediction effects in naturalistic language comprehension.

Seventy-eight native English speakers (30 males), aged 18-60 (M±SD = 25.8±9, Med-

SIQR = 23±3), from MIT and the surrounding Boston community participated for pay-

ment. Each participant completed a story comprehension task (the critical experiment) and

a functional localizer task designed to identify the language and MD networks.

6.1.2 Experimental Design

Data collection was carried out by my collaborators at the Massachusetts Institute of Tech-

nology: Evelina Fedorenko, Idan Blank, and their associates.

Participants

Of the 78 participants, 8 were left-handed per self-report or Edinburgh handedness inven-

tory (Oldfield, 1971), and of these, only one showed a right-lateralized language network

(the language networks of all other participants were left-lateralized). Responses from the

remaining participant were retained in analyses for completeness and generalizability to the

larger population (see Willems et al., 2014, for discussion). All participants gave informed
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consent in accordance with the requirements of MITs Committee on the Use of Humans as

Experimental Subjects (COUHES).

Stimuli and Tasks

Each participant completed one or more localizer tasks as well as a the critical listening

task.

The sentences > non-words (S>N) localizer of Fedorenko et al. (2010) was used to

identify the regions of the functional language network. This language localizer has been

extensively validated by prior work across tasks (passive comprehension vs. memory probe),

presentation modality (visual vs. auditory), participants, and scanning sessions within par-

ticipants (Fedorenko et al., 2010; Braze et al., 2011; Vagharchakian et al., 2012; Fedorenko

and Thompson-Schill, 2014; Mahowald and Fedorenko, 2016; Blank and Fedorenko, 2017,

inter alia).

The converse of this localizer (N>S) was used to identify the regions of the MD network.

This localizer is effective for MD because processing lists of non-words requires more effort

than processing valid sentences, and it picks out highly similar regions to those identified by

a wide range of effort-related contrasts, including non-linguistic contrasts targeting working

memory and inhibitory control (Fedorenko et al., 2013; Mineroff et al., 2018).

In the main story comprehension task, participants heard between one and eight audi-

torily presented stories from the Natural Stories corpus (Futrell et al., 2020). Stories were

recorded by two native English speakers (one male, one female) at a 44.1 kHz sampling rate,

ranged in length from 4m46s to 6m29s (983-1099 words), and were played over scanner-safe

headphones (Sensimetrics, Malden, MA).

Thirty participants completed the main task as a passive listening task, while the re-

mainder answered either six or twelve comprehension questions following each story. Prior

evidence indicates that the presence or absence of comprehension questions does not mea-

surably affect the responses in the language and MD systems (Blank and Fedorenko, 2017).
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Data Acquisition, Preprocessing, and Functional Localization

Data acquisition, preprocessing, and functional localization used the same equipment and

procedures described in Diachek et al. (2020). Following established fMRI preprocessing

steps over the spatial and temporal dimensions (Diachek et al., 2020), activity in the fROIs

of interest in each participant were extracted by (1) applying broad fROI-specific binary

masks computed from a large independent sample (https://evlab.mit.edu/funcloc/

download-parcels), then (2) averaging activity in the top 10% of voxels within each mask

in each participant with the largest localizer contrast (S > N for LANG or N > S for MD)

according to the beta estimates of voxel-wise generalized linear models. The language net-

work contains six fROIs: inferior frontal gyrus (IFG) and its orbital part (IFGorb), middle

frontal gyrus (MFG), anterior temporal cortex (AntTemp), posterior temporal cortex (Post-

Temp), and angular gyrus (AngG). The MD network contains ten fROIs: posterior (Post-

Par), middle (MidPar), and anterior (AntPar) parietal cortex, precentral gyrus (PrecG),

superior frontal gyrus (SFG), middle frontal gyrus (MFG) and its orbital part (MFGorb),

opercular part of the inferior frontal gyrus (IFGop), the anterior cingulate cortex and pre-

supplementary motor cortex (ACC/pSMA), and the insula (Insula).

6.1.3 Statistical Analysis

Predictor Definitions

Word predictability was estimated using an information-theoretic measure known as sur-

prisal (Shannon, 1948; Hale, 2001): the negative log probability of a word given its con-

text. Surprisal can be computed in many ways, depending on the choice of probability

model. Three previous naturalistic fMRI studies (Willems et al., 2015; Brennan et al.,

2016; Lopopolo et al., 2017) searched for surface-level n-gram surprisal effects, using words

and/or parts of speech as the token-level representation. In addition, two previous natural-

istic fMRI studies (Brennan et al., 2016; Henderson et al., 2016) probed structure-sensitive
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PCFG surprisal measures (Hale, 2001; Roark et al., 2009). As discussed in §6, results from

these studies failed to converge on a clear answer as to the nature and functional location

of surprisal effects. In this study, the following surprisal estimates were used:

• 5-gram surprisal: 5-gram surprisal for each word in the stimulus set from a KenLM

(Heafield et al., 2013) language model with default smoothing parameters trained on

the Gigaword 3 corpus (Graff et al., 2007). 5-gram surprisal quantifies the predictabil-

ity of words as the negative log probability of a word given the four words preceding

it in context.

• PCFG surprisal: Lexicalized probabilistic context-free grammar surprisal computed

using the incremental left-corner parser of (van Schijndel et al., 2013) trained on a

generalized categorial grammar (Nguyen et al., 2012) reannotation of Wall Street

Journal sections 2 through 21 of the Penn Treebank (Marcus et al., 1993).

Models also included the control variables Sound Power, Repetition Time (TR) Number,

Rate, Frequency, and Network, which were operationalized as follows:

• Sound power: Frame-by-frame root mean squared energy (RMSE) of the audio

stimuli computed using the Librosa software library (McFee et al., 2015).

• TR Number: Integer index of the current fMRI sample within the current scan.

• Rate: Deconvolutional intercept. A vector of ones time-aligned with the word onsets

of the audio stimuli. Rate captures influences of stimulus timing independently of

stimulus properties (see e.g. Brennan et al., 2016).

• Frequency: Corpus frequency computed using a KenLM unigram model trained on

Gigaword 3. For ease of comparison to surprisal, frequency is represented here on a

surprisal scale (negative log probability), such that larger values index less frequent

words (and thus greater expected processing cost).

155



• Network: Numeric predictor for network ID, 0 for MD and 1 for LANG.

Models additionally included the mixed-effects random grouping factors Participant and

fROI. Prior to regression, all predictors were rescaled by their standard deviations in the

training set except rate (which has no variance) and network (which is an indicator variable).

Reported effect sizes are therefore in standard units.

Continuous-time deconvolutional regression

Naturalistic fMRI studies of language processing are an important use case for CDR, since

the variable duration of spoken words prevents direct temporal alignment between word

times and scanner acquisition times in order to deconvolve the HRF (Boynton et al., 1996),

which is known to vary between brain regions (Handwerker et al., 2004). For this reason,

this study employed CDR models with the following two-parameter HRF kernel based on

the widely-used double-gamma canonical HRF (Lindquist et al., 2009):

h(x;α, β)
def
=

βαxα−1e
−1
β

Γ(α)
− 1

6

βα+10xα+9e
−1
β

Γ(α+ 10)
(6.1)

where α and β are initialized to the SPM defaults of 6 and 1, respectively. More complex

kernels (e.g., that fit the amplitude of the second term, rather than fixing it at 1/6) were

avoided because of their potential to overfit. Predictors in these models were given their

own coefficients (which rescale h above), but the parameters α and β of h were tied across

predictors within each region of interest, modeling the assumption of a fixed-shape blood

oxygenation response to neural activity in a given cortical region.

The CDR models applied in this study assumed improper uniform priors over all pa-

rameters in the variational posterior and were optimized using a learning rate of 0.001 and

stochastic minibatches of size 1024. Following standard practice from linear mixed-effects

regression (Bates et al., 2015), random effects were L2-regularized toward zero at a rate of

1.0. Convergence was declared when the loss was uncorrelated with training time by t-test
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at the 0.5 level for at least 250 of the past 500 training epochs. For computational efficiency,

predictor histories were truncated at 256 timesteps (words), which yields a maximum tem-

poral coverage in these data of 48.34s (substantially longer than the effective influence of

the canonical HRF). Prediction from the network used an exponential moving average of

parameter iterates (Polyak and Juditsky, 1992) with a decay rate of 0.999, and models

were evaluated using maximum a posteriori estimates obtained by setting all parameters in

the variational posterior to their means. This approach is valid because all parameters are

independent Gaussian in the CDR variational posterior.

Model Specification

The following CDR model specification was fitted to responses from each of the LANG

and MD fROIs, where italics indicate predictors convolved using the fitted HRF and bold

indicates predictors that were ablated for hypothesis tests:

BOLD ∼ TRNumber + soundPower + Rate + Frequency + 5gram + PCFG

+ (TRNumber + soundPower + Rate + Frequency + 5gram + PCFG | fROI)

+ (1 | Participant)

The random effect by fROI indicates that the model included zero-centered by-fROI random

variation in response amplitude and HRF parameters for each functional region of interest.

As shown, the model also included a random intercept by participant.1 The above model

can test whether the surprisal variables help predict neural activation in a given cortical

region. However, it cannot be used to compare the magnitudes of response to surprisal across

networks (Nieuwenhuis et al., 2011). Therefore, differences in effects between networks were

tested by fitting the combined responses from both LANG and MD using the following model

specification with the indicator variable network :

1The data do not appear to support richer by-participant random effects, e.g. including random slopes
and HRF shapes, since such models explained no held-out variance in early analyses, indicating overfitting.
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BOLD ∼ TRNumber + soundPower + Rate + Frequency + 5gram + PCFG

+ Network + TRNumber:Network + soundPower :Network + Rate:Network +

Frequency :Network + 5gram:Network + PCFG:Network + (1 | fROI) + (1

| Participant)

The random effects by fROI were simplified in comparison to that of the single-network

models because the network variable exactly partitions the fROIs. Thus ablated models can

fully capture network differences as long as they have by-fROI random effects for surprisal.

Indeed, initial tests showed virtually no difference in held-out likelihood between full and

ablated combined models when those models included full by-fROI random effects despite

large-magnitude estimates for the interactions with Network in the full model. Furthermore,

the fitted parameters suggested that the by-fROI term was being appropriated in ablated

models to capture between-network differences. In the full model, the 5-gram surprisal

estimates for 50% of LANG fROI and 45% of MD fROI were positive, while in the model

with 5gram:network ablated, 100% of LANG fROI and only 20% of MD fROI were positive,

indicating that differences in response to 5-gram surprisal had been pushed into the by-

fROI random term. For this reason, this study used simpler models for the combined test,

despite their insensitivity to by-fROI variation in HRF shape or response amplitude.

In interactions between network and convolved predictors, the interaction was computed

following convolution but prior to rescaling with that predictors coefficient. Thus, the

interaction term represents the offset in the estimated coefficient from the MD network to

the LANG network, as is the case for binary interaction terms in linear regression models.

Finally, as discussed in §3.1, exact deconvolution from continuous predictors like sound

power is not possible, since such predictors do not have an analytical form that can be

integrated. Instead, sound power was sampled at fixed intervals (100ms), in which case the

event-based CDR procedure reduces to a Riemann sum approximation of the continuous

convolution integral. Note that the word-aligned predictors (e.g. 5-gram Surprisal) therefore

have different timestamps than Sound Power, and as a result the history window spans
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different regions of time (up to 256 words into the past for the word-aligned predictors and

up to 100ms × 256 = 25.6s of previous Sound Power samples).

Ablative Statistical Testing

In order to avoid confounds from (1) collinearity in the predictors and/or (2) overfitting to

the training data, this study followed a standard testing protocol from machine learning

of evaluating differences in prediction performance on out-of-sample data using ablative

non-parametric paired permutation tests for significance (Demšar, 2006). This approach

can be used to assess the presence of an effect by comparing the prediction performance

of a model that contains the effect against that of an ablated model that does not contain

it. Specifically, given two pre-trained nested models, out-of-sample by-item likelihoods are

computed from each model over the evaluation set and used to construct an empirical p

value for the likelihood difference test statistic by randomly swapping by-item likelihoods

n times (where n=10,000) and computing the proportion of obtained likelihood differences

whose magnitude exceeded that observed between the two models. To ensure a single

degree of freedom for each comparison, only fixed effects were ablated, with all random

effects retained in all models.

The data partition was created by cycling TR numbers e into different bins of the

partition with a different phase for each subject u:

partition(e, u)
def
=

⌊
e+ u

30

⌋
mod 2 (6.2)

assigning output 0 to the training set and 1 to the evaluation set. Since TR duration is 2s,

this procedure splits the BOLD times series into 60 second chunks, alternating assignment

of chunks into training and evaluation sets with a different phase for each participant.

Partitioning in this way allowed these analyses to (1) obtain a model of each participant,

(2) cover the entire time series, and (3) sub-sample different parts of the time series for
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Figure 6.1: Estimated overall double-gamma hemodynamic response functions (HRFs) by
network

each participant during training, while at the same time suppressing correlation between

the training and evaluation responses by using a relatively long period of alternation (30

TRs or 60s).

6.1.4 Accessibility

Access instructions for software and supplementary data needed to replicate these ex-

periments (e.g. librosa, CDR, KenLM, Gigaword 3, etc.) are given in the publications

cited above. Post-processed fMRI timeseries are publicly available at the following URL:

https://osf.io/eyp8q/. These experiments were not pre-registered.

6.2 Results

The CDR-estimated mean double-gamma hemodynamic response functions (HRFs) for the

LANG and MD networks are given in Figure 6.1, the estimated HRFs by fROI in LANG

regions are shown in Figure 6.2, surprisal estimates and percent variance explained by region

are given in Tables 6.1 and 6.2, and population-level effect estimates (i.e. areas under the

estimated HRFs) are reported in Table 6.3. MD estimates by fROI are of little relevance
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Figure 6.2: Estimated language-network HRFs by fROI

% held out
fROI Hemisphere 5-gram estimate PCFG estimate variance explained

AngG L 0.030 0.156 0.0%
AntTemp L 0.215 0.017 5.1%

IFG L 0.287 0.309 2.2%
IFGorb L 0.010 0.318 1.3%

MFG L 0.382 0.346 2.3%
PostTemp L 0.242 0.258 6.1%

Table 6.1: LANG surprisal estimates by fROI. Estimates given are the area under the
fitted HRF. Models explain held-out variance in all regions but AngG.
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% held out
fROI Hemisphere 5-gram estimate PCFG estimate variance explained

AntPar L 0.102 -0.523 0.0%
IFGop L 0.009 0.141 0.0%
Insula L -0.200 0.284 0.0%
MFG L 0.074 -0.026 0.0%

MFGorb L -0.215 0.252 0.5%
MidPar L 0.116 -0.051 0.0%
mPFC L -0.125 0.257 0.0%

PostPar L 0.083 -0.006 0.0%
PrecG L 0.078 0.048 0.0%

SFG L 0.180 0.025 0.0%
AntPar R 0.016 -0.077 0.0%
IFGop R -0.011 0.075 0.0%
Insula R -0.185 0.227 0.0%
MFG R 0.058 -0.006 0.0%

MFGorb R -0.004 0.019 0.0%
MidPar R 0.040 -0.110 0.0%
mPFC R -0.321 0.440 0.0%

PostPar R -0.312 0.434 0.0%
PrecG R 0.034 0.118 0.0%

SFG R 0.066 -0.034 0.0%

Table 6.2: MD surprisal estimates by fROI. Estimates given are the area under the
fitted HRF. Models explain no held-out variance in any region except left MFGorb.

Coefficient
Predictor LANG MD Combined

Sound Power -0.055 -0.006 -0.003
TR Number -0.148 0.048 -0.005

Rate 0.242 0.146 0.048
Frequency -0.060 -0.199 -0.134

5-gram Surprisal 0.209 -0.025 0.003
PCFG Surprisal 0.235 0.097 0.038

Network – – -1.32
Sound Power by Network – – -0.050
TR Number by Network – – -0.008

Rate by Network – – 0.269
Frequency by Network – – 0.040

5-gram Surprisal by Network – – 0.212
PCFG Surprisal by Network – – 0.193

Table 6.3: Model effect estimates.
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LANG MD Combined
%Total %Relative %Total %Relative %Total %Relative

Ceiling 6.18% 100% 1.34% 100% 2.63% 100%
Model (train) 3.68% 59.5% 0.75% 56.0% 1.18% 44.9%

Model (evaluation) 2.30% 37.2% 0.00% 0.00% 0.71% 27.0%

Table 6.4: Model percent variance explained compared to a “ceiling” linear model regressing
against the mean response of all other participants for a particular story/fROI. “% Total”
columns show absolute percent variance explained, while “% Relative” columns show per-
cent variance explained relative to the ceiling.

Comparison p LL Improvement Effect Estimate

5-gram over neither 0.0001*** 182 0.307
PCFG over neither 0.0001*** 183 0.352
5-gram over PCFG 0.0001*** 61 0.209
PCFG over 5-gram 0.0001*** 61 0.235

Table 6.5: LANG result. Significance in LANG by paired permutation test of log-
likelihood improvement on the evaluation set from including a fixed effect for each of 5-gram
Surprisal and PCFG Surprisal, over (1) a baseline with neither fixed effect and (2) baselines
containing the other fixed effect only. The Effect Estimate column shows the estimated
effect size from the model containing the fixed effect (i.e. the area under the estimated
HRF).

Comparison p LL Improvement Effect Estimate

5-gram over neither 0.137 3 0.019
PCFG over neither 1.0 -29 0.081
5-gram over PCFG 1.0 -8 -0.025
PCFG over 5-gram 1.0 -40 0.097

Table 6.6: MD result. Significance in MD by paired permutation test of log-likelihood
improvement on the evaluation set from including a fixed effect for each of 5-gram Surprisal
and PCFG Surprisal, over (1) a baseline with neither fixed effect and (2) baselines con-
taining the other fixed effect only. A p-value of 1.0 is assigned by default to comparisons
in which held-out likelihood improved under ablation. The Effect Estimate column shows
the estimated effect size from the model containing the fixed effect (i.e. the area under the
estimated HRF).
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Comparison p LL Improvement Effect Estimate

5-gram:Network over neither 0.0001*** 144 0.212
PCFG:Network over neither 0.0001*** 144 0.193

5-gram:Network over PCFG:Network 0.0001*** 53 0.301
PCFG:Network over 5-gram:Network 0.0001*** 53 0.317

Table 6.7: Combined result. Significance in the combined data by paired permutation
test of log-likelihood improvement on the evaluation set from including a fixed interaction
for each of 5-gram Surprisal and PCFG Surprisal with Network, over (1) a baseline with
neither fixed interaction and (2) baselines containing the other fixed interaction only. The
Effect Estimate column shows the estimated interaction size from the model containing the
fixed interaction (i.e. the difference in effect estimate between LANG and MD).

Median LL
Improvement % Participants Num Removable

Comparison by Participant Improved Participants

5-gram over neither 1.236 71.8% 19
PCFG over neither 0.732 64.1% 14
5-gram over PCFG 0.335 61.5% 7
PCFG over 5-gram 0.498 60.3% 5

Table 6.8: Generality of LANG surprisal effects across participants. Median like-
lihood improvement in LANG on the evaluation set by participant, percent of participants
whose held-out predictions improved due to surprisal effects, and the number of participants
with the largest held-out improvement whose data can be removed without changing the
significance of the effect at a 0.05 level. Held-out likelihood improves for most participants
in every comparison, and at least 5 of the most responsive participants can be removed in
each comparison without changing the significance of the effect.
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Figure 6.3: LANG likelihood improvement by participant. Spread of by-participant
likelihood improvements in each comparison. Most improvements are positive, and effects
are not driven by large positive outliers (see Table 6.8).
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because they do not generalize (Tables 6.2 and 6.6). As shown, HRF shapes resemble but

deviate slightly from the canonical HRF (Boynton et al., 1996) to varying degrees in each

region, highlighting both consistency with HRF estimates established by prior research as

well as the potential of CDR to discover subtle differences in HRF shape between cortical

regions (Handwerker et al., 2004) in naturalistic data. The models find positive effects

of similar strength for both 5-gram surprisal and PCFG surprisal in LANG, and smaller

effects of surprisal (even negative in the case of 5-gram surprisal) in MD.

At the level of individual regions, the models explained held-out variance in all but one of

the language fROIs (the exception was the AngG fROI). In contrast, the models explained no

held-out variance in any but one MD fROI (the left MFGorb fROI). These two exceptions

are left to future research, but overall, the results demonstrate that surprisal effects are

generally present throughout the language network and generally absent throughout the

MD network. The differences between the individual-network models are largely replicated

in the Combined model (Table 5), where main effects represent the estimated mean response

in MD while interactions with Network represent the estimated difference in mean response

between LANG and MD. As shown, Combined model estimates of both 5-gram:network

and PCFG:network are positive and large-magnitude, indicating that the model estimates

these variables to yield greater increases in neural activity in LANG over MD.

Table 6.4 reports model percent variance explained compared to a theoretical ceiling

computed by regressing responses against responses from the same brain region in all other

participants exposed to that stimulus. This ceiling is designed to quantify the variance that

can be explained based on the stimuli alone, independently of inter-participant variation.

As shown, models explain a substantial amount of the available variance in LANG. MD

models explain no variance on the evaluation set, suggesting that the MD model did not

learn generalizable patterns.

Because fROIs were modeled as random effects in these analyses, pairwise statistical test-

ing of between-region differences in effect amplitude is not straightforward, and systematic
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investigation of regions/subnetworks within each broader functional network is left to future

work. However, a qualitative examination of the by-region estimates suggests potentially

interesting functional differences within the language network (Table 6.1). In particular,

the IFG, MFG, and PostTemp fROIs all responded roughly equally to both measures of

surprisal. The IFGorb fROI responded more to PCFG than 5-gram surprisal (an unex-

pected finding given that this is not the language region that is traditionally most strongly

associated with syntactic processing; e.g., Friederici, 2011; Blank et al., 2016). The AngG

fROI showed a similar pattern, but the models did not explain held-out variance for this

fROI. And the AntTemp fROI responded more to 5-gram than PCFG surprisal (a finding

which bears on debates about the functional role of this brain region in language processing,

see §6.3). Although the differences in effect sizes between the two surprisals are significant

in each of IFGorb, AngG, and AntTemp by Monte Carlo estimated credible intervals tests,

such tests are anticonservative in CDR (see §3.6). Nonetheless, they suggest that different

regions of the language network might be differentially sensitive to surface-level vs. struc-

tural properties of language. The internal architecture of the language network has been

long debated, and a number of proposals have been put forward (e.g. Friederici, 2011, 2012;

Baggio and Hagoort, 2011; Tyler et al., 2011; Duffau et al., 2014; Ullman, 2016). However,

no consensus has yet been reached about whether different regions support different aspects

of language processing, and, if so, which regions support which linguistic computations (see

e.g. Fedorenko et al., 2018, for discussion). Perhaps neural investigations of naturalistic lan-

guage comprehension, combined with the power of the novel CDR approach and stringent

statistical evaluation, can help inform this ongoing debate.

Tables 6.5–6.7 show the main finding of this study: fixed effects for 5-gram surprisal

and PCFG surprisal significantly improve held-out likelihood in the LANG network over a

model containing neither, as well as over one another. The difference in effect size between

the LANG and MD networks is statistically significant, as shown by the significant likelihood

improvements yielded by interactions of the surprisal variables with network.
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As shown in Figure 6.1, the effects signs for frequency in both networks are negative.

The lack of a positive effect of frequency is not what would be expected if word frequency

modulated neural activity (Staub, 2015), but it is consistent with recent naturalistic behav-

ioral evidence against distinct effects of frequency and predictability (Chapter 5), as well as

with previous theoretical claims that apparent frequency effects are underlyingly effects of

predictability (Levy, 2008). Negative effects like these indicate suppression of the BOLD re-

sponse and pose a challenge for interpretation (Harel et al., 2002). Prior work has suggested

that such negative effects can arise from increased processing load elsewhere in the brain

through hemodynamic factors (“vascular steal” Lee et al., 1995; Saad et al., 2001; Harel

et al., 2002; Kannurpatti and Biswal, 2004) and/or neuronal ones such as inhibition by an

attention mechanism (Smith et al., 2000; Shmuel et al., 2002, 2006). The means by which

such mechanisms might give rise to negative frequency effects in these experiments are not

currently clear. Since frequency effects are not central to the present research question,

targeted investigation of their existence and direction is left to future research.

Figure 6.3 and Table 6.8 assess the generalizability of surprisal effects across participants.

Figure 6.3 shows most by-participant improvements clustered around a positive median,

without strong visual indication of large-magnitude positive outliers that might exclusively

drive the effect. This intuition is quantified in Table 6.8. As shown, held-out likelihood

improves for most participants in all comparisons. Furthermore, at least 5 of the most

responsive participants in each comparison can be removed without changing the significance

of the effect. Participant removal is a stringent criterion not only because it excludes

the most responsive participants from consideration but also because it reduces the power

of the permutation test by shrinking the evaluation set. These participant-level analyses

demonstrate that surprisal effects in LANG are not merely driven by e.g. one or two outlier

participants.
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6.3 Discussion

The current study examined signatures of predictive processing during naturalistic story

comprehension in two functionally distinct cortical networks: the domain-specific language

(LANG) network, and the domain-general multiple demand (MD) network. Specifically, this

study tested which of these networks increased their responses with lower word predictabil-

ity, operationalized using both 5-gram and probabilistic context-free grammar (PCFG)

surprisal. The main results, yielded by continuous-time deconvolutional regression (CDR)

analysis of surprisal effects in the two networks, are shown in Tables 6.5–6.7: in LANG,

both 5-gram surprisal and PCFG surprisal have positive effects that yield statistically sig-

nificant improvements to held-out likelihood, both over a baseline containing neither fixed

effect as well as over one another. By contrast, in MD, neither surprisal effect is significant

in any comparison. A direct test for a difference in surprisal effects across the two networks

(Table 6.7) shows that the interactions of both surprisals with network are positive and

statistically significant, indicating that the BOLD response to both surface-level (5-gram)

and structural (PCFG) word predictability is larger in LANG than MD. These results are

over a baseline that includes an effect for lexical frequency (log unigram probability), which

is notable given the strong natural correlation between surprisal and frequency, both gen-

erally (Demberg and Keller, 2008) and in the current experimental materials (r = 0.78

overall). This finding suggests that the surprisal effects reported here are indeed driven

by predictive coding and not merely by the cost of retrieving infrequent words. Together,

these results demonstrate that predictive coding for upcoming words is primarily a canon-

ical computation carried out by domain-specific cortical circuits, rather than by feedback

from higher, domain-general executive control circuits, and that these predictions depend

on both surface-level and structural information sources. The finding of a generalized effect

of PCFG surprisal throughout the language network aligns with prior findings of evidence

for linguistic prediction (e.g. Kuperberg et al., 2000; Baumgaertner et al., 2002; Friederici
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et al., 2003; Obleser et al., 2007) and syntactic processing (e.g. Blank et al., 2016, see Zac-

carella et al., 2017 for review) in these regions, but suggests that prior evidence of linguistic

prediction effects in MD (e.g. Kuperberg et al., 2000; Baumgaertner et al., 2002; Gold et al.,

2006; Bonhage et al., 2015; Hartwigsen et al., 2017) may have been influenced by the use

of artificially constructed linguistic stimuli and/or task artifacts.

This finding bears on an ongoing discussion in cognitive neuroscience about the compart-

mentalization of language processing. Early investigations of the functional organization of

the brain argued for the existence of neuroanatomical modules dedicated to specific linguis-

tic functions, from lower-level perceptual and motor components of language to higher-level

ones like phonological, lexical, and combinatorial syntactic and semantic processing (Broca,

1861; Dax, 1863; Wernicke, 1874; Fodor, 1983; Petersen et al., 1988; Levelt, 1989; Pinker,

1994). This position has been called into question by subsequent work stressing the dis-

tributed nature of cognition (e.g. Mesulam, 1998; Thompson-Schill et al., 2005; Blumstein

and Amso, 2013), based on evidence both (1) that brain regions conventionally believed

to be language-specific are also recruited for non-linguistic tasks (e.g. Dehaene et al., 1999;

Stanescu-Cosson et al., 2000; Maess et al., 2001; Kaan and Swaab, 2002; Koelsch et al., 2002;

Koechlin and Jubault, 2006; Hein and Knight, 2008; Blumstein, 2009; January et al., 2009),

and (2) that brain regions conventionally believed to support domain-general cognitive

control are also recruited for language processing, especially under difficult comprehension

conditions (e.g. Kaan and Swaab, 2002; Kuperberg et al., 2003; Novick et al., 2005; Rodd

et al., 2005; Novais-Santos et al., 2007; January et al., 2009; Peelle et al., 2009; Rogalsky

and Hickok, 2011; Nieuwland et al., 2012; Wild et al., 2012; McMillan et al., 2012, 2013; Hsu

and Novick, 2016). Although such results might raise doubts about the necessity and suffi-

ciency of the putative language network for language processing, they are counterbalanced

by rigorous non-replications of (1) the engagement of language regions in arithmetic, work-

ing memory, or cognitive control tasks (Fedorenko et al., 2011; Monti et al., 2012; Amalric

and Dehaene, 2018), and (2) the engagement of cognitive control (MD) regions in language
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processing (Blank and Fedorenko, 2017; Wehbe et al., 2020). Based on this evidence, some

have concluded that there does indeed exist a functionally specific cortical language network

(Fedorenko, 2014; Fedorenko and Thompson-Schill, 2014, see also Hagoort, 2005; Friederici

et al., 2011; Matchin et al., 2014; Rogalsky et al., 2015; Matchin et al., 2017, for propos-

als that are compatible with the idea that at least some of the language-responsive areas

are specific to language) and that MD engagement in many previous studies of language

processing was induced by experimental task artifacts (Campbell and Tyler, 2018; Diachek

et al., 2020; Wehbe et al., 2020).

The aforementioned debate about the compartmentalization of language processing has

largely focused on controlled experimental paradigms, which are prone to induce task ar-

tifacts that confound functional differentiation of neural structures. By showing strong

prediction-based functional differentiation between the LANG and MD networks during

naturalistic language comprehension, the present study provides evidence that predictive

coding for language is primarily carried out by language-specific rather than domain-general

mechanisms.

This finding also contributes to the growing literature on predictive coding in the mam-

malian brain, which has recently produced evidence that neurons are tuned to predict up-

coming inputs but has also primarily focused on low-level perceptual processing (Rao and

Ballard, 1999; Alink et al., 2010; Bubic et al., 2010; Keller and Mrsic-Flogel, 2018; Singer

et al., 2018). The present study suggests that prediction extends to high-level cognitive

functions like language comprehension and is similarly implemented as a domain-specific

canonical computation in regions that plausibly store linguistic knowledge (e.g. Hagoort,

2005; Fedorenko, 2014).

The finding that surprisal computed by marginalizing over syntactic structures (PCFG

Surprisal) modulates the LANG response independently of surface-level n-gram surprisal is

evidence that participants are indeed computing such structures during incremental sentence

processing (Hale, 2001; Levy, 2008; Fossum and Levy, 2012; Rasmussen and Schuler, 2018)
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and is inconsistent with previous arguments that the human sentence processing response

is largely insensitive to such structures (Frank and Bod, 2011; Frank et al., 2012; Frank

and Christiansen, 2018). At the same time, the finding that 5-gram surprisal modulates

the LANG response independently of PCFG surprisal is evidence that the human sentence

processing mechanism is sensitive to word co-occurrence patterns in ways that are not well

captured by a strictly context-free parser. This suggests either (1) that the human parser

is not strictly context-free (see e.g., tree-adjoining grammars, Joshi, 1985; combinatory

categorial grammars, Steedman, 2000; and other context-sensitive grammar formalisms for

natural language), or (2) that participants track both hierarchical structure and word co-

occurrence patterns separately and simultaneously when generating predictions, and that

these two kinds of processes take place in overlapping brain areas. In addition, (2) is

compatible with either distinct predictive mechanisms that track word-level and syntactic

features separately, or with a unified mechanism that leverages both kids of cues. Evaluating

these hypotheses is left to future work. However, note that the two variants of (2) can be

distinguished by the functional form of effects. Separate mechanisms should make roughly

additive contributions to prediction error (see e.g. Fedorenko et al., 2006), whereas a unified

mechanism should primarily experience prediction difficulty when both string-level and

syntactic cues are poor. Using a deep neural generalization of CDR that can estimate

non-linear interactions, Chapter 8 presents some preliminary evidence in favor of the latter

(unified mechanism) view. The lack of structured prediction effects in MD is of interest given

prior proposals that ground structural effects in constraints on working memory (Abney

and Johnson, 1991; Resnik, 1992; Rasmussen and Schuler, 2018). These theories view the

processing of hierarchical language structures as a special case of a domain general capacity

for hierarchic sequential prediction (Botvinick, 2007), which is at least consistent with the

hypothesis that the resources recruited for prediction are also domain general (see e.g. Smith

and Levy, 2013). However, to the extent that the memory resources used for prediction

are also expected to activate in response to prediction error (e.g., by undergoing model
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revision, Chao et al., 2018), the failure to find such a signal in MD suggests that these

memory resources may also be specific to the functional language network, rather than

domain general (e.g. Caplan and Waters, 1999; Matchin et al., 2017).

Estimates at the fROI level shed light on results from prior naturalistic fMRI experi-

ments (Willems et al., 2015; Brennan et al., 2016; Henderson et al., 2016; Lopopolo et al.,

2017). The present results show strong effects of both surface-level and structural estimates

of word predictability in roughly the union of left-hemisphere language regions for which

such effects have been reported in prior work (e.g., temporal and inferior frontal regions). At

the same time, this study did not find clear evidence of predictive coding in regions linked

with the multiple demand network, like superior frontal gyrus (cf. Lopopolo et al., 2017),

in part because the use of held-out significance tests helped avoid reporting MD surprisal

effects that fail to generalize (e.g., left-hemisphere SFG, Table 6.2). The lack of held-out

testing in earlier studies may therefore have contributed to prior findings of surprisal effects

in MD regions. Finally, this study obtained significant positive effects for surprisal imple-

mentations in language regions that have previously been reported null or negative (e.g.,

lexicalized trigrams in IFG and posterior temporal cortex or PCFG surprisal in IFG, per

Brennan et al., 2016; PCFG surprisal in the temporal lobe, per Henderson et al., 2016). It is

possible that the size of the present study increased sensitivity to these effects, since studies

using less data are more likely to yield sign and magnitude errors (Gelman and Carlin,

2014). The picture that emerges more clearly from the current results than from those of

prior studies is of a predictive coding mechanism that is specific to the functional language

network, generalized throughout it, and sensitive to both surface-level word co-occurrence

patterns and hierarchical structure.

Although these analyses focused on prediction effects, language comprehension involves

a good deal more than simply minimizing surprise — meanings conveyed by partially-

complete words and syntactic structures are rapidly and incrementally recognized, stored,

and integrated into existing knowledge representations as the discourse unfolds (Tanenhaus
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et al., 1995; Altmann and Kamide, 1999). Numerous studies have probed the computa-

tions involved in storage, retrieval, and integration during human sentence comprehension

(MacDonald et al., 1992; Kluender and Kutas, 1993; Gibson and Ko, 1998; Felser et al.,

2003; Hsiao and Gibson, 2003; Aoshima et al., 2004; Grodner and Gibson, 2005; Lewis and

Vasishth, 2005; Fiebach et al., 2005; Fedorenko et al., 2006, 2007; Rasmussen and Schuler,

2018), and several memory-based estimators of structural processing have been investigated

across behavioral and cognitive neuroscience investigations, including embedding difference

(Wu et al., 2010), the number of open nodes based on a particular parsing strategy (top-

down, bottom-up, or left-corner; Nelson et al., 2017; Brennan and Pylkkänen, 2017), depen-

dency locality costs (storage or integration cost from maintaining and retrieving syntactic

dependencies; Gibson, 2000), and encoding or retrieval interference (i.e. processing costs

in the ACT-R framework; Lewis and Vasishth, 2005). Effort due to memory storage and

retrieval is plausibly distinct from effort due to reallocating resources between competing

structural interpretations of the unfolding sentence (a standard interpretation of surprisal

effects, e.g. Hale, 2001; Levy, 2008), and a complete account of human language processing

will likely involve both prediction-based and integration-based computations (Levy et al.,

2013; Levy and Gibson, 2013). Although these kinds of integration effects are outside the

scope of the present study of predictive coding (though see Chapter 7), some have ar-

gued that prediction may subserve memory retrieval and therefore interact with integrative

processing (Altmann, 1998). Therefore, the prediction effects reported here may, to some

extent, be amenable to interpretation as effects of integration. That is, researchers who

view “prediction” as a conscious lexically specific activity may view these results as evi-

dence of conceptual pre-activation or preparedness that eases integration once a word is

observed (see Ferreira and Chantavarin, 2018, for an overview of this distinction). Fuller

investigation of this distinction is left to future work. For the purposes of the present study,

simply note that these results indicate that any such pre-activation processes appear to be

restricted to the LANG network, rather than invoking the MD network, and are strongly
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correlated with probabilistic measures of word predictability.

The present emphasis on structural influences on prediction, rather than sensitivity to

syntactic structure more generally, is a possible explanation for one apparent discrepancy

between these results and those of some previous studies. In particular, results do not show

evidence of PCFG surprisal effects in the AntTemp language fROI (the PCFG surprisal

estimate in AntTemp is virtually 0, Figure 6.2), whereas numerous previous studies have

argued for syntactic effects in left anterior temporal cortex, both using hand-constructed

stimuli (Mazoyer et al., 1993; Stowe et al., 1998; Friederici et al., 2003; Vandenberghe et al.,

2002; Dronkers et al., 2004; Humphries et al., 2006; Rogalsky and Hickok, 2009; Pallier

et al., 2011; Brennan and Pylkkänen, 2012; Nelson et al., 2017) and naturalistic stimuli

(Brennan et al., 2016; Brennan and Pylkkänen, 2017; Bhattasali et al., 2018, 2019). The

role of left anterior temporal cortex in syntactic processing has been called into question by

an absence of syntactic deficits in patients with anterior temporal damage (e.g. Wilson et al.,

2012), and some have argued that parts of the anterior temporal lobe primarily carry out

lexical and semantic processing, including perhaps semantic composition (e.g. Bemis and

Pylkkänen, 2011), rather than syntactic structure building (Visser et al., 2010; Wilson et al.,

2014; Lambon Ralph et al., 2017, see also Matchin et al., 2018). However, even granting

that left anterior temporal cortex is implicated in syntactic processing, prior studies by and

large have focused on structural measures that are arguably integrative in nature (syntactic

node count, number of parser operations, etc.) or have used manipulations that are too

broad to target prediction vs. integration (sentences vs. list of words or “Jabberwocky”

sentences). Indeed, claims about syntactic processing in left anterior temporal cortex tend

to focus on composition rather than on structured prediction. The present results thus do

not preclude a role for left anterior temporal cortex in structure-building broadly construed;

they simply fail to show strong evidence in this brain area of effects of structural context on

word predictability. Prior studies of structured prediction effects in left anterior temporal

cortex have yielded mixed results; although Brennan et al. (2016) found evidence of part-of-

175



speech n-gram and PCFG surprisal in anterior temporal cortex over bi- and tri-gram effects,

Lopopolo et al. (2017) did not find a response to part-of-speech n-gram surprisal, and the

response to syntactic PCFG surprisal in Henderson et al. (2016) was too weak to achieve

significance. Prediction effects based on lexical context in left anterior temporal cortex

(i.e. lexical n-grams) are better attested (Willems et al., 2015; Lopopolo et al., 2017), and

some have explicitly argued that left anterior temporal cortex plays a central role in lexical-

semantic prediction (Lau et al., 2016). The present findings in the AntTemp fROI (esp. large

effects of 5-gram surprisal) contribute to this debate, suggesting that lexical prediction does

occur in left anterior temporal cortex (among other regions) while syntactic prediction likely

occurs elsewhere. Left anterior temporal cortex may therefore be an important object of

study in teasing apart predictive vs. integrative processing during language comprehension,

and further investigation is warranted.

In summary, the present findings based on a large-scale naturalistic fMRI experiment

support a view of linguistic prediction as implemented by domain-specific cortical circuits,

sensitive to both surface-level and syntactic information sources, and generalized across the

functional language network.
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Chapter 7

fMRI Evidence of Domain-Specific Working Memory

Retrieval During Naturalistic Language Processing

Chapter 6 reported fMRI evidence that predictive processes that underlie human language

comprehension (Hale, 2001; Kuperberg and Jaeger, 2016; Levy, 2008). However, many

theories of human language comprehension also posit integrative processes that retrieve

and update representations in working memory (Gibson, 2000; Hawkins, 1994; Lewis and

Vasishth, 2005). This chapter revisits the same fMRI dataset used in Chapter 6 in order

to evaluate relationships between working memory and brain activity during naturalistic

language processing.

Prior behavioral and neuroimaging experiments have supported effects of integration

(Fiebach et al., 2001; Grodner and Gibson, 2005) and prediction (Bonhage et al., 2015;

Frisson et al., 2005) in isolation using carefully constructed stimuli. Empirically distin-

guishing these two hypotheses is challenging (Levy, 2008), and many previously reported

effects of syntactic processing (e.g. syntactic anomalies Osterhout and Holcomb, 1992) are

consistent with both theories. Further complicating matters are poorly-understood influ-

ences of standard experimental designs in studies of human language comprehension; al-

though studies overwhelmingly investigate syntax using carefully selected or hand-crafted

sentences presented in isolation, the normal conditions of language use are richly varied,

contextualized, and meaningful, and growing neuroscientific evidence indicates that artifi-

cial stimuli and tasks may engage cognitive mechanisms that are not central to language

processing (Campbell and Tyler, 2018; Diachek et al., 2020; Hasson et al., 2018; Hasson and

Honey, 2012). Importantly, recent naturalistic behavioral studies have generally not shown
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strong evidence of memory retrieval costs (Demberg and Keller, 2008; van Schijndel and

Schuler, 2013), casting doubt on theories that hypothesize syntax-driven memory opera-

tions as central to comprehension (Gibson, 2000; Hawkins, 1994; Lewis and Vasishth, 2005;

McElree et al., 2003). In addition, terminological and conceptual overlap between predic-

tion and integration presents a challenge when attempting to dissociate them (Ferreira and

Chantavarin, 2018; Kuperberg and Jaeger, 2016; Levy et al., 2013).

This study pursues two central questions about the role of working memory (WM) in

language comprehension. Question 1 (Q1): Do the mechanisms that update representa-

tions in WM operate (at least partially) independently from any mechanisms that predict

upcoming words? Question 2 (Q2): Are the WM resources used for language compre-

hension shared with other domains of cognition? The first question follows from ongoing

debate about memory and expectation in human sentence processing (Gibson, 2000; Levy,

2008; Lewis and Vasishth, 2005). The second follows from ongoing debate about the degree

to which WM resources used in language comprehension are domain-specific (Caplan and

Waters, 1999; Fiebach et al., 2001) vs. domain-general (Amici et al., 2007; Fedorenko et al.,

2006, 2007; Stowe et al., 1998).

This study investigates these questions using data from a large-scale naturalistic fMRI

study (Chapter 6), estimating memory demands via integration cost as hypothesized by

the Dependency Locality Theory (DLT Gibson, 2000) under rigorous controls for word pre-

dictability (van Schijndel and Linzen, 2018). To probe domain specificity, influences of

integration cost are examined in participant-specific functionally-localized cortical regions

of the language-selective network (Fedorenko et al., 2010, LANG) on the one hand and of

the domain-general multiple-demand (MD) executive control network (Duncan, 2010, 2013)

on the other. Results show a strong effect of integration cost in LANG only, supporting the

use of language-specialized working memory resources for incremental language comprehen-

sion. Based on these results, this chapter argues (a) that the human language processor

uses syntactic cues to compose representations in working memory; (b) that this kind of
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composition is active in everyday naturalistic language processing; and (c) that the working

memory resources used to compose these representations are specialized for the language

domain.

7.1 Materials and Methods

The materials, methods, data acquisition, preprocessing, and control predictors (Sound

Power, TR Number, Rate, Frequency, and Network) are identical to those described in

Chapter 6, with one difference: any TRs that follow the final word of each story were

removed, in order to reduce the influence of response decay following the end of the stimu-

lus. The pattern of significance reported in Chapter 6 holds under these stricter exclusion

criteria.

7.1.1 Control Predictors

Because points of predicted retrieval cost may partially overlap with prosodic breaks be-

tween clauses, models additionally include two prosodic controls:

• End of Sentence: Indicator for whether a word terminates a sentence.

• Pause Duration: Length (in ms) of pause following a word, as indicated by hand-

corrected word alignments over the auditory stimuli. Words that are not followed by

a pause take the value 0ms.

The pattern of significance reported in Chapter 6 holds in the presence of these additional

controls.

In addition, inspired by evidence that word predictability strongly influences blood oxy-

gen level dependent (BOLD) responses in the language network, models additionally include

the critical 5-gram Surprisal and PCFG Surprisal predictors from Chapter 6. PCFG and

5-gram Surprisal were investigated Chapter 6 because their interpretable structure permits
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testing of hypotheses of interest in that study. However, their strength as language models

has now been outstripped by less interpretable but better performing incremental language

models based on deep neural networks (Gulordava et al., 2018; Jozefowicz et al., 2016; Rad-

ford et al., 2019). In the present investigation, predictability effects are a control rather than

an object of study and are therefore not bound by the same interpretability considerations.

To strengthen the case for independence of retrieval processes from prediction processes,

models additionally include the following predictability control:

• Adaptive Surprisal: Word surprisal as computed by the adaptive recurrent neural

network (RNN) of van Schijndel and Linzen (2018). This network is equipped with

a cognitively-inspired mechanism that allows it to adjust its expectations to the local

discourse context at inference time, rather than relying strictly on knowledge acquired

during the training phase. Compared to strong baselines, results show both improved

model perplexity and improved fit between model-generated surprisal estimates and

measures of human reading times. Because the RNN can in principle learn both (1) the

local word co-occurrence patterns exploited by 5-gram models and (2) the structural

features exploited by PCFG models, it competes for variance in our regression models

with the other surprisal predictors, whose effects are consequently attenuated relative

to Chapter 6.

As in Chapter 6, models additionally include the mixed-effects random grouping factors

Participant and fROI. The ability to treat fROI as a coherent unit of analysis derives from

the functional localization strategy, which aligns regions functionally rather than stereotac-

tically across participants. Prior to regression, all predictors are rescaled by their standard

deviations in the training set except Rate (which has no variance) and the indicators End

of Sentence and Network. Reported effect sizes are therefore in standard units.
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7.1.2 Measuring Working Memory Involvement

There are a number of existing theories concerning the kind and relative difficulty of work-

ing memory operations involved in human sentence processing, but most focus on costs

related to incremental storage and/or retrieval of intermediate representations as required

by the syntax of the sentence being processed. For example, early accounts of processing

effects like nesting complexity posited storage costs for simultaneously maintaining multiple

incomplete elements (e.g. relative clauses) in memory (Miller and Chomsky, 1963). Relat-

edly, Hawkins (1994) posits locality-based processing costs proportional to the number of

words required in order to recognize a syntactic constituent. An influential theory unifying

these notions of storage and locality is the Dependency Locality Theory (DLT) of Gibson

(2000). According to the DLT, storage cost arises from maintenance in memory of syntactic

dependencies to expected future syntactic heads, and occurs in proportion to the number of

such dependencies. Integration cost, by contrast, arises from retrieval from working mem-

ory of previously mentioned discourse referents in order to construct new dependencies to

them, as required by the syntax of the unfolding sentence. Integration cost is proportional

to the number of discourse referents that intervene in a dependency and could compete

as retrieval targets, giving rise to the notion of locality: longer dependencies with more

intervening discourse referents incur a larger integration cost. The DLT is a computational

level (Marr, 1982) theory that does not explicitly commit to a parsing algorithm or memory

structure.

Subsequent algorithmic-level theories have hypothesized related principles of working

memory use in sentence comprehension. Lewis and Vasishth (2005) propose a parser

grounded in the adaptive control of thought-rational (ACT-R) framework (Anderson, 2004).

ACT-R composes representations in memory through a content-addressable retrieval oper-

ation that is subject to similarity-based interference (McElree et al., 2003; Van Dyke and

Lewis, 2003), with memory representations that decay with time unless reactivated through

retrieval. The decay function enforces a locality-like notion (retrievals triggered by long
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dependencies will on average cue targets that have decayed more), but this effect can be

attenuated by intermediate retrievals of the target. Unlike the DLT, ACT-R has no notion

of active maintenance in memory (items are simply retrieved as needed) and therefore does

not predict a storage cost.

Another line of research (Johnson-Laird, 1983; Resnik, 1992; van Schijndel et al., 2013;

Rasmussen and Schuler, 2018) frames incremental sentence comprehension as left-corner

parsing (Aho and Ullman, 1972) under a stack-based implementation of working memory.

Under this view, incomplete derivation fragments representing the hypothesized structure

of the sentence are assembled word by word, with working memory required to (1) push new

derivation fragments to the stack, (2) retrieve and compose derivation fragments from the

stack, and (3) maintain incomplete derivation fragments on the stack. For a detailed pre-

sentation of a recent instantiation of this framework, see Rasmussen and Schuler (2018). In

principle, costs could be associated with any of the parse operations computed by left-corner

models, as well as (1) with DLT-like notions of storage (maintenance of multiple deriva-

tion fragments on the stack) and (2) with ACT-R-like notions of retrieval and reactivation,

since items in memory (corresponding to specific derivation fragments) are incrementally

retrieved and updated. Unlike ACT-R, left-corner frameworks do not necessarily enforce

activation decay over time, and they do not inherently specify expected processing costs.

Prior work has investigated the empirical predictions of some of these theories using

computer simulations (Lewis and Vasishth, 2005; Rasmussen and Schuler, 2018) and human

responses to constructed stimuli (Grodner and Gibson, 2005) and reported robust WM

effects. Related work has also shown effects of dependency length manipulations in measures

of comprehension and online processing difficulty (Gibson et al., 1996; McElree et al., 2003;

Van Dyke and Lewis, 2003; Makuuchi et al., 2009; Meyer et al., 2013). In light of these

findings, evidence from more naturalistic human sentence processing settings for working

memory effects of any kind is surprisingly weak. Demberg and Keller (2008) report DLT

integration cost effects in the Dundee eye-tracking corpus (Kennedy et al., 2003), but only
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when the domain of analysis is restricted — overall DLT effects are actually negative (longer

dependencies yield shorter reading times, also known as an anti-locality effect, Konieczny,

2000). van Schijndel and Schuler (2013) also report anti-locality effects in Dundee, even

under rigorous controls for word predictability phenomena that have been invoked to explain

anti-locality effects in other experiments (Konieczny, 2000; Vasishth and Lewis, 2006). It is

therefore not yet settled how central syntactically-related working memory involvement is

to human sentence processing in general, rather than perhaps being driven by the stimuli

and tasks commonly used in experiments designed to test these effects (Hasson and Honey,

2012; Hasson et al., 2018; Campbell and Tyler, 2018; Diachek et al., 2020). Few prior fMRI

studies of naturalistic sentence processing have investigated working memory (although

some of the syntactic predictors in Brennan et al., 2016, especially syntactic node count,

may be amenable to a memory-based interpretation).

In light of this, the present study includes both an exploratory and a confirmatory com-

ponent. The exploratory component seeks to determine whether the signatures of working

memory involvement as predicted by any of the above theories register during naturalistic

language processing in either of the brain networks examined here (LANG and MD). The

confirmatory component then evaluates a single representative WM measure on an unseen

dataset, in order to assess the degree to which the effect is generalizable in LANG and/or

MD.

Because these measures are being deployed on naturalistic texts, this study is constrained

to consider only those WM measures that are amenable to broad-coverage implementation.

Unfortunately, no broad-coverage implementation of the Lewis and Vasishth (2005) ACT-R

model exists, and it cannot be evaluated here. This study therefore focuses on measures

from the DLT and from left-corner theories, both of which can be deterministically inferred

from a hand-corrected (Shain et al., 2018) generalized categorial grammar (Nguyen et al.,

2012) reannotation of the stimulus sentences originally annotated using the Penn Treebank

standard (Marcus et al., 1993).
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For the DLT predictors, following prior work (Demberg and Keller, 2008), this study

focuses on measures of integration (retrieval) cost. Integration cost is computed as the

number of discourse referents that intervene in a backward-looking syntactic dependency,

where “discourse referent” is operationalized for simplicity as any noun or finite verb. In

addition, all three implementation variants of integration cost proposed by Shain et al.

(2016) are considered:

• ±V: Verbs are more expensive. Non-finite verbs receive a cost of 1 (instead of 0) and

finite verbs receive a cost of 2 (instead of 1).

• ±C: Coordination is less expensive. Dependencies out of coordinate structures skip

preceding conjuncts in the calculation of distance, and dependencies with interven-

ing coordinate structures assign that structure a weight equal to that of its heaviest

conjunct.

• ±M: Exclude modifier dependencies. Dependencies to preceding modifiers are ig-

nored.

These variants are motivated by the following considerations. First, the reweighting

in +V is motivated by the possibility (1) that finite verbs may require more information-

rich representations than nouns, especially tense and aspect (Binnick, 1991), and (2) that

non-finite verbs may still contribute eventualities to the discourse context, albeit with un-

derspecified tense (Lowe, 2019). As in Gibson (2000), the precise weights are unknown, and

the weights used here are simply heuristic approximations that instantiate a hypothetical

overall pattern: non-finite verbs contribute to retrieval cost, and finite verbs contribute

more strongly than other classes.

Second, the discounting of coordinate structures under +C is motivated by the possi-

bility that conjuncts are incrementally integrated into a single representation of the overall

coordinated phrase, and thus that their constituent nouns and verbs no longer compete

184



as possible retrieval targets. Anecdotally, this possibility is illustrated by the following

sentence:

Today I bought a cake, streamers, balloons, party hats, candy, and several gifts

for my niece’s birthday.

In this example, the dependency from for to its modificand bought does not intuitively seem

to induce a large processing cost, yet it spans 6 coordinated nouns, yielding an integration

cost of 6, which is similar in magnitude to that of some of the most difficult dependencies

explored in Grodner and Gibson (2005). The +C variant treats the entire coordinated

direct object as one discourse referent, yielding an integration cost of 1.

Third, the discounting of preceding modifiers in +M is motivated by the possibility that

modifier semantics may be integrated early, alleviating the need to retrieve the modifier once

the head word is encountered. Anecdotally, this possibility is illustrated by the following

sentence:

(Yesterday,) my coworker, whose cousin drives a taxi in Chicago, sent me a list

of all the best restaurants to try during my upcoming trip.

The dependency between the verb sent and the subject coworker spans a finite verb and 3

nouns, yielding an integration cost of 4 (plus a cost of 1 for the discourse referent introduced

by sent). If the sentence includes the pre-sentential modifier Yesterday, which under the

syntactic annotation used in this study is also involved in a dependency with the main verb

sent, then the DLT predicts that it should double the structural integration cost at sent

because the same set of discourse referents intervenes in two dependencies rather than one.

Intuitively, this does not seem to be the case, possibly because the temporal information

contributed by Yesterday may already be integrated with the incremental semantic repre-

sentation of the sentence before sent is encountered, eliminating the need for an additional

retrieval operation at that point. The +M modification instantiates this possibility.
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A superficial consequence of the +C and +M variants is that they tend to attenuate

large integration costs. Thus, if they improve fit to human measures, it may simply be the

case that the DLT in its original formulation overestimates the costs of long dependencies.

To account for this possibility, this study additionally considers a log-transformed variant

of (otherwise unmodified) DLT integration cost.

Full description of left-corner parsing models of sentence comprehension is beyond the

scope of this presentation (see e.g. Rasmussen and Schuler, 2018), which is restricted to

the minimum details needed to define the predictors covered here. At a high level, phrasal

structure derives from a sequence of fork (±F) and join (±J) decisions made at each word.

In terms of memory structures, the fork decision depends on whether a new element (repre-

senting the current word and its hypothesized part of speech) matches current expectations

about the upcoming syntactic category; if so, it is composed with the derivation at the front

of the memory store (−F), and if not, it is pushed to the store as a new derivation fragment

(+F). Following the fork decision, the join decision depends on whether the two items at

the front of the store can be composed (+J) or not (−J). In terms of phrasal structures,

fork decisions index the ends of multiword constituents (−F at the end of a multiword con-

stituent, +F otherwise), and join decisions index the ends of left-child (center-embedded)

constituents (+J at the end of a left child, −J otherwise). These composition operations

(−F and +J) instantiate the notion of syntactic “integration” as envisioned by e.g. the DLT,

since structures are retrieved from memory and updated by these operations. They each

may thus plausibly contribute a memory cost (Shain et al., 2016), leading to the following

left-corner predictors:

• End of Constituent (−F). Indicator for whether a word terminates a multiword

constituent (i.e. generates a “no fork” decision by the parser).

• End of Center Embedding (+J). Indicator for whether a word terminates a center

embedding (left child) of one or more words (i.e. generates a “yes join” decision by
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the parser).

• End of Multiword Center Embedding (−F, +J). Indicator for whether a word

terminates a multiword center embedding (i.e. generates both “no fork” and “yes join”

decisions).

In addition, the difficulty of retrieval operations could in principle be modulated by locality,

possibly due to activation decay and/or interference as argued by Lewis and Vasishth (2005).

To account for this possibility, this study also explores distance-based left-corner predictors:

• Length of Constituent (−F). When a word terminates a multiword constituent,

distance from most recent retrieval (including creation) of the derivation fragment at

the front of the store (otherwise, 0).

• Length of Multiword Center Embedding (−F, +J). When a word terminates a

multiword center embedding, distance from most recent retrieval (including creation)

of the derivation fragment at the front of the store (otherwise, 0).

The notion of distance must be defined, and three definitions are explored here. One simply

counts the number of words (WD). However, this complicates comparison to the DLT,

which then differs not only in its conception of memory usage (constructing dependencies

vs. retrieving/updating derivations in a stack), but also in its notion of locality (the DLT

defines locality in terms of nouns and finite verbs, rather than words). To enable direct

comparison, DLT-like distance metrics are also used in the above left-corner locality-based

predictors, in particular, both using the original DLT definition of discourse referents (DR),

as well as the modified variant +V that reweights finite and non-finite verbs (DRV). All

three distance variants are explored for both distance-based left-corner predictors.

Note that these left-corner distance metrics more closely approximate ACT-R retrieval

cost than DLT integration cost, since, as stressed by Lewis and Vasishth (2005), decay

in ACT-R is determined by the recency with which an item in memory was previously
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activated, rather than overall dependency length. Left-corner predictors can therefore be

used to test one of the motivating insights of the ACT-R framework: the influence of

reactivation on retrieval difficulty.

Note also that because the parser incrementally constructs expected dependencies be-

tween as-yet incomplete syntactic representations, at most two retrievals are cued per word

(up to one for each of the fork and join decisions), no matter how many dependencies the

word participates in. This property makes left-corner parsing a highly efficient form of incre-

mental processing, a feature that has been argued to support its psychological plausibility

(Johnson-Laird, 1983; van Schijndel et al., 2013; Rasmussen and Schuler, 2018).

The aforementioned left-corner predictors are roughly analogous to DLT integration cost

(retrieval). This study additionally considers the number of incomplete derivation fragments

that must be held in memory (similar to the number of incomplete dependencies in DLT

storage cost), can be read off the stack depth of the parser state:

• Embedding depth. The number of incomplete derivation fragments left on the stack

once a word has been processed.

This study additionally considers the possibility that pushing a new fragment to the stack

may incur a cost:

• Start of embedding. Indicator for whether Embedding Depth increased from one

word to the next.

i As with retrieval-based predictors, the primary difference between left-corner embedding

depth and DLT storage cost is the efficiency with which the memory store is used by the

parser. Because expected dependencies between incomplete syntactic derivations are con-

structed as soon as possible, a word can contribute at most one additional item to be

maintained in memory (vis-a-vis DLT storage cost, which can in principle increase arbi-

trarily at words which introduce multiple incomplete dependencies). As mentioned above,
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ACT-R does not posit storage costs at all, and thus investigation of such costs potentially

stands to empirically differentiate ACT-R from DLT/left-corner accounts.

As an initial step, this study examined effect estimates and goodness of fit to the train-

ing set (see §7.1.3 for model design and §7.1.4 for ablative testing procedures) for many

variants of the aforementioned hypotheses computed from a hand-corrected deep syntac-

tic annotation of the experimental materials (Shain et al., 2018). In general, in LANG,

exploratory results showed strong training-set effects of DLT variants and weak or null

training-set effects of left-corner predictors, while in MD, results showed little reliable effect

of either family of predictors. The strongest-performing DLT variant in the training set

in both networks was the one that uses all three manipulations (+V, +C, +M) mentioned

above, and it was therefore selected for our critical analysis (henceforth “DLT”). Critical

analyses additionally include a control variable for the strongest left-corner predictor across

networks (end of center embedding, i.e. +J, as above), an indicator marking words that

terminate center embedding regions (single- or multi-word left children of right children in

a phrase structure tree), where items in working memory are hypothesized to be composed

during incremental parsing (Rasmussen and Schuler, 2018).

7.1.3 Model Design

Model design and HRF parametric family follow Chapter 6, except that improper uniform

priors are replaced with proper priors as described in Chapter 3, motivated by evidence

(Chapter 4) that models with proper priors converge more quickly and estimate uncertainty

more conservatively.

The CDR model is as follows, where italics indicate convolved predictors and bold

indicates the ablated predictor (the fixed effect for DLT integration cost):

BOLD ∼ TRNumber + Rate + SoundPower + EndOfSentence + PauseDura-

tion + Frequency + 5gramSurp + PCFGSurp + AdaptiveSurp + yesJ + DLT

+ (TRNumber + Rate + SoundPower + EndOfSentence + PauseDuration +
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Frequency + 5gramSurp + PCFGSurp + AdaptiveSurp + yesJ + DLT | fROI)

+ (1 | Participant)

that is, a linear coefficient for the index of the TR in the experiment, convolutions of the

remaining predictors with the fitted HRF, by-fROI random variation in effect size and shape,

and by-participant random variation in base response level. This model is used to test for

significant effects of the DLT in each of LANG and MD. To test for significant differences

between LANG and MD in DLT effect size, we additionally fitted the following model to

the combined responses from both LANG and MD:

BOLD ∼ TRNumber + Rate + SoundPower + EndOfSentence + PauseDu-

ration + Frequency + 5gramSurp + PCFGSurp + AdaptiveSurp + yesJ +

DLT + TRNumber:Network + Rate:Network + SoundPower :Network + End-

OfSentence:Network + PauseDuration:Network + Frequency:Network + 5gram-

Surp:Network + PCFGSurp:Network + AdaptiveSurp:Network + yesJ :Network

+ DLT :Network + (1 — fROI) + (1 — Participant)

By-fROI random effects are simplified from the individual network models in order to sup-

port model identifiability (see Chapter 6).

7.1.4 Ablative Statistical Testing

Data partitioning follows that described in Chapter 6. Model quality is quantified as the

Pearson sample correlation, henceforth ρ, between model predictions on the evaluation set

and the true response. Fixed effects are tested by paired permutation test (Demšar, 2006)

of the difference in correlation ρdiff = ρfullρablated, where ρfull is the ρ of a model containing

the fixed effect of interest while ρablated is the ρ of a model lacking it. Paired permutation

testing requires an elementwise performance metric that can be permuted between the two

models, whereas Pearson correlation is a global metric that applies to the entire prediction-

response matrix. To address this, tests exploited the fact that the sample correlation can be
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Figure 7.1: Effect sizes (HRF integrals) by network, with 95% Monte Carlo estimated
credible intervals. DLT integration cost is associated with a strong increase in LANG
activation, but is not associated with MD activation.

converted to an elementwise performance statistic as long as both variables are standardized

(i.e. have sample mean 0 and sample standard deviation 1):

ρ (X,Y ) =
1

n− 1

n∑
i=1

(
xi − x
sx

)(
yi − y
sy

)
=

1

n− 1

n∑
i=1

xiyi (7.1)

As a result, an elementwise performance metric can be derived as the elements of a Hadamard

product between independently standardized prediction and response vectors. These prod-

ucts are then permuted in the usual way, using 10,000 resampling iterations. Each test

involves a single ablated fixed effect, retaining all random effects in all models.

7.2 Results

7.2.1 Principal Analysis

Effect sizes (HRF integrals) by predictor are plotted in Figure 7.1, with the underlying

CDR-estimated HRF shapes by network plotted in Figure 7.2. As shown, the DLT effect

is strongly positive in LANG (among the largest effects in the model), but null in MD. Ta-

ble 7.1 shows correlations between model predictions and true responses by network in both
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(a) LANG (b) MD

Figure 7.2: Overall CDR-estimated HRF shapes in LANG (left) and MD (right).

LANG MD Combined
ρ-absolute ρ-relative ρ-absolute ρ-relative ρ-absolute ρ-relative

Ceiling 0.221 1.0 0.116 1.0 0.152 1.0
Model (train) 0.142 0.643 0.072 0.621 0.084 0.553

Model (evaluation) 0.098 0.443 0.019 0.164 0.057 0.375

Table 7.1: Correlation ρ of model predictions with the true response under document-based
repartitioning, compared to a ceiling measure correlating the true response with the mean
response of all other participants for a particular story/fROI. “ρ-absolute” columns show
absolute percent variance explained, while “ρ-relative” columns show the ratio of ρ-absolute
to the ceiling.
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(a) LANG

(b) MD

Figure 7.3: Effect sizes by fROI in LANG (left) vs. MD (right), with 95% Monte Carlo
estimated credible intervals. The DLT effect is consistently positive across LANG fROIs,
indicating a spatially distributed effect, whereas the DLT effect is not statistically greater
than zero in any MD region.
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fROI Network ρdiff

AngG LANG 0.004
AntTemp LANG 0.018

IFG LANG 0.006
IFGorb LANG 0.009

MFG LANG 0.005
PostTemp LANG 0.008

LAntPar MD 0.000
LIFGop MD -0.003
LInsula MD -0.004
LMFG MD -0.002

LMFGorb MD 0.001
LMidPar MD -0.002
LPostPar MD -0.003

LPrecG MD 0.000
LSFG MD 0.001

LmPFC MD -0.002
RAntPar MD 0.002
RIFGop MD 0.002
RInsula MD -0.001
RMFG MD 0.001

RMFGorb MD 0.002
RMidPar MD 0.001
RPostPar MD -0.001

RPrecG MD 0.002
RSFG MD 0.004

RmPFC MD -0.003

Table 7.2: By fROI out of sample correlation improvement from adding a fixed DLT effect.
DLT models are systematically better correlated with the true response in LANG (6/6
regions) but not in MD (11/20 regions).
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halves of the partition (training and evaluation), relative to a “ceiling” estimate of stimulus-

driven correlation, computed as the correlation between (a) the responses in each region of

each participant at each story exposure and (b) the average response of all other participants

in that region, for that story. Consistent with prior studies (Blank and Fedorenko, 2017),

LANG exhibits stronger language-driven synchronization across participants than MD. Our

models also explain a greater share of that correlation in LANG vs. MD, especially on the

out-of-sample evaluation set (40% relative correlation for LANG vs. 5% relative anticorrela-

tion in MD). This finding is borne out by permutation tests on the out-of-sample evaluation

set: the DLT significantly improves ρdiff in LANG (p < 0.0001***) but not MD (p = 0.651).

The DLT effect is statistically larger in LANG than MD, since the increased DLT response

in LANG (the positive interaction DLT:Network, Table 3) significantly improves ρdiff in a

combined model of responses from both networks (p < 0.0001***).

Estimates also show a spatially distributed positive effect of DLT integration cost across

the regions of LANG (Figure 7.3a) that systematically improves generalization quality (Ta-

ble 4), indicating that all LANG fROIs are implicated to some extent in the processing costs

associated with the DLT. This pattern does not hold in MD, where no region shows a statis-

tically positive DLT response (Figure 7.3b), and the sign of ρdiff across regions is roughly at

chance (Table 7.2). These results converge to support strong, spatially distributed sensitiv-

ity in the language-selective network to an estimate of WM retrieval difficulty, but no clear

evidence of such sensitivity anywhere within the domain-general multiple-demand network.

In addition to the critical analyses above, follow-up analyses were conducted to address

possible alternative interpretations of the data pattern. First, because the data partition

of Chapter 6 distributes materials across the training and evaluation sets, it is possible

that item-level confounds may have affected results in ways that generalize to the test set.

To address this possibility, the data were repartitioned so that the training and test sets

contain non-overlapping materials and the critical analyses above were re-run (Reanalysis

1). The critical result is unchanged: estimated credible intervals for DLT effects overlap
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between the two splits for both networks, with a significant positive DLT effect in LANG

(p < 0.0001***) but not MD (p = 0.154) and a significantly larger DLT effect in LANG

than MD in a combined model of both networks responses (p < 0.0001***). Evidence thus

supports the existence of memory costs that generalize to new materials.

A second reanalysis addresses the possibility that the use of the flipped language localizer

(Non-words > Sentences) to define MD may have ruled out linguistic effects in MD by

construction. Note first that this is not entailed: regions that are not selective for sentences

may still be implicated in language-related WM operations. Such a pattern in fact follows

from the hypothesis targeted in this study that domain-general WM resources are recruited

for sentence processing. In addition, the MD voxels selected by the Nonwords > Sentences

contrast overlap heavily with voxels localized by a non-linguistic spatial WM task (and other

executive tasks) and respond robustly to non-linguistic cognitive difficulty (Fedorenko et al.,

2013). Nonetheless, this study addresses the concern directly by relocalizing the MD regions

using a non-linguistic spatial WM contrast (Hard > Easy) and re-running the critical MD

analyses (Reanalysis 2). In other words, rather than defining MD regions as those voxels

with the greatest increase in activation for non-word lists over sentences, MD regions are

redefined as those voxels with the greatest increase in activation for the hard condition over

the easy condition in a (non-linguistic) spatial working memory task. Under the new split

on materials, the DLT does not yield a held-out performance improvement (de facto p =

1.0). Under the original split from Chapter 6, the DLT contributes a significant performance

improvement (p = 0.002**), but its effect is negative (i.e. it is associated with a decrease

in BOLD signal), which is not indicative of a retrieval cost.

The ensemble of follow-up analyses thus support the central claim: WM retrieval diffi-

culty registers in the language network, with little effect in the multiple-demand network.
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7.3 Discussion

This study investigated two key questions about the role of working memory (WM) retrieval

during naturalistic sentence comprehension: does hypothesized retrieval difficulty register

in brain activity (Q1), and, if so, are domain-general WM resources involved (Q2)? To do

so, this study analyzed a large publicly available dataset of fMRI responses to naturalis-

tic stories (Chapter 6) with respect to theory-driven estimates of syntactically modulated

WM retrieval difficulty (Gibson, 2000) under rigorous controls for word predictability (van

Schijndel and Linzen, 2018)), functionally localizing a domain-specific, language-selective

network (LANG; Fedorenko et al., 2010) and a domain-general, multiple-demand network

(MD; Duncan, 2010), implicated in executive functions, in each participant. Results show

a strong, spatially distributed, positive association between LANG activation and syntactic

dependency length during naturalistic language comprehension (the DLT; Gibson, 2000),

but no such association in MD, the most plausible location for domain-general WM re-

sources (Assem et al., 2020; Camilleri et al., 2018; Cole and Schneider, 2007; Duncan, 2010;

Duncan and Owen, 2000; Gläscher et al., 2010; Goldman-Rakic, 1988; Kimberg and Farah,

1993; Owen et al., 1990; Prabhakaran et al., 2000; Rottschy et al., 2012). The DLT effect in

LANG emerges on top of multiple strong controls for word frequency and predictability from

context, including surprisal estimates from a recent cognitively-inspired recurrent neural

network language model (van Schijndel and Linzen, 2018). This result withstands multiple

reanalyses that (a) control for item-level confounds by resplitting the data document-wise

(Reanalysis 1) and/or (b) use an alternative way to localize the MD network, with a non-

linguistic WM task (Reanalysis 2). Results thus respectively support the answers “yes” and

“no” to Q1 and Q2: WM retrieval difficulty registers strongly in brain activity during nat-

uralistic sentence comprehension, but such retrieval is implemented in language-specialized

cortical circuits, with little recruitment of domain-general WM resources housed within the

MD network.
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DLT estimates of retrieval difficulty are critically linked to the syntactic structure of

sentences: retrieval operations are hypothesized to occur at words which terminate syn-

tactic dependencies, with difficulty proportional to the number of intervening discourse

referents that might compete strongly with the retrieval target. The present evidence that

such difficulty measures robustly describe the brain response to naturalistic stories pro-

vides compelling support for syntactic processing as a core subroutine of typical language

comprehension. This finding challenges to some extent prior arguments that representa-

tions computed during typical language comprehension are largely approximate and shallow

(Frank et al., 2015; Frank and Bod, 2011; Frank and Christiansen, 2018; Swets et al., 2008),

although further research is needed to determine more precisely the level of syntactic detail

present in human mental representations (Brennan et al., 2016; Brennan and Hale, 2019;

Lopopolo et al., 2020). Our results also suggest a spatially distributed burden of syntactic

processing throughout the regions of the language network (see also Chapter 6) and are

not consistent with prior arguments for the existence of one or two dedicated syntactic pro-

cessing centers (Bemis and Pylkkänen, 2011; Friederici et al., 2006; Hagoort, 2005; Matchin

et al., 2017; Matchin and Hickok, 2020; Pallier et al., 2011; Vandenberghe et al., 2002).

The DLT effects shown here furthermore fail to be accounted for by multiple strong

measures of word surprisal, which has repeatedly been shown in prior work to describe

naturalistic human sentence processing responses across modalities, including behavioral

(Aurnhammer and Frank, 2019; Demberg and Keller, 2008; Fossum and Levy, 2012; Frank

and Bod, 2011; Smith and Levy, 2013; van Schijndel and Schuler, 2015), electrophysiolog-

ical (Armeni et al., 2019; Frank et al., 2015), and fMRI (Brennan et al., 2016; Henderson

et al., 2016; Lopopolo et al., 2017; Willems et al., 2015, also, Chapter 6). In its strong form,

surprisal theory (Levy, 2008) equates sentence comprehension with allocating activation

between (potentially infinite) possible interpretations of the unfolding sentence, in propor-

tion to their probability given the currently observed string. Under such a view, structured

representations are assumed to be available, and the primary work of comprehension is
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(probabilistically) selecting among them. However, according to integration-based theories

(Gibson, 2000; Lewis and Vasishth, 2005), incremental effort is required to compute the

available interpretations in the first place (i.e. by storing, retrieving, and updating repre-

sentations in memory). By showing integration costs that are not well explained by word

predictability, the current study joins recent arguments in favor of complementary roles

played by integration and prediction in language comprehension (Ferreira and Chantavarin,

2018; Levy et al., 2013). Strong word predictability controls are of course a perpetually

moving target: the present methods cannot rule out the possibility that some other current

or future statistical language model might explain apparent WM effects. However, such

an objection effectively renders surprisal theory unfalsifiable. This study has attempted to

address such concerns by deploying a surprisal control (adaptive surprisal) that, at the time

of writing, is recent, high performance, and cognitively motivated.

This study bears on the role of working memory in functionally identified cortical net-

works, but does not rule out a domain-general role for sub-cortical structures in WM during

language processing, especially hippocampus (Leszczynski, 2011; Olson et al., 2006; Olton

et al., 1979; Yonelinas, 2013; Yoon et al., 2008). While the contribution of MD regions to

WM is well established, the role of hippocampus in WM (as opposed to long-term episodic

memory) is less so, given several prior studies that have not found an association between

WM and hippocampus (Baddeley et al., 2010; Baddeley and Warrington, 1970; Jeneson

et al., 2010; Nadel and MacDonald, 1980; Shrager et al., 2008). Investigation of possible

subcortical WM contributions to naturalistic language processing is left to future research.

Taken together with prior work, these results also bear on the computational nature

of the memory systems that support language comprehension. The DLT itself is agnostic

toward the design of the retrieval mechanism by which intervening discourse referents in-

crease retrieval cost. One possible mechanism that is consistent with behavioral evidence of

DLT-driven reading slowdowns is recency-based serial search, whereby the processor iter-

ates backward over possible dependency targets by recency of mention until a good match is
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encountered. This interpretation is inconsistent with findings from speed-accuracy trade-off

experiments, which do not show improved retrieval accuracy at longer latencies and thus

instead support a direct, content-addressable retrieval mechanism whereby similar competi-

tors degrade the retrieved representation but do not increase retrieval time (McElree et al.,

2003). A plausible hypothesis based on these speed-accuracy trade-off results is that all

retrieval operations require the same amount of computation and differ only in the fidelity

of the retrieved representation. The present findings from fMRI disconfirm this hypothesis:

computing dependencies with more intervening competitors requires measurably more neu-

ronal activity (hence, more computation). If this is not the result of serial search (McElree

et al., 2003), a plausible alternative hypothesis is that computationally-intensive clean-up

mechanisms exist to identify and repair low-quality retrieval outputs (Van Dyke and Lewis,

2003).

In conclusion, results of this study (1) support the hypothesis that incremental retrieval

and integration of syntactic structures in memory is a core component of human sentence

comprehension and (2) indicate that the memory resources responsible for these computa-

tions reside primarily in language-specialized cortical circuits, rather than in domain-general

executive control areas.
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Part IV

CDRNN: A Deep Neural

Extension of CDR
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Chapter 8

CDRNN Motivation, Definition, and Evaluation

The CDR approach proposed in this thesis has been shown to address the problem of tem-

poral diffusion in studies of human language processing (Chapters 1–4) and to be useful

for investigating the existence and timecourse of processing effects (Chapters 5–7). How-

ever, CDR retains a number of simplifying assumptions (e.g. that the IRF is fixed over

time) that may not hold of the human language processing system (linearity, additivity,

homosketasticity, stationarity, and context-independence, see Section 8.1).

Deep neural networks (DNNs), widely used in natural language processing (NLP), can

relax these strict assumptions. Indeed, psycholinguistic regression analyses and NLP sys-

tems share a common structure: both fit a function from word features to some quantity

of interest. However, psycholinguistic regression models face an additional constraint: they

must be interpretable enough to allow researchers to study relationships between variables

in the model. This requirement may be one reason why black box DNNs are not generally

used to analyze psycholinguistic data, despite the tremendous gains DNNs have enabled in

natural language tasks (Peters et al., 2018; Devlin et al., 2019; Radford et al., 2019; Brown

et al., 2020, inter alia), in part by better approximating the complex dynamics of human

cognition as encoded in natural language (Linzen et al., 2016; Gulordava et al., 2018; Tenney

et al., 2019; Hewitt and Manning, 2019; Wilcox et al., 2019; Schrimpf et al., 2020).

This chapter proposes an attempt to leverage the flexibility of DNNs for psycholinguistic

data analysis. The continuous-time deconvolutional regressive neural network (CDRNN) is

an extension of CDR that reimplements the impulse response function as a DNN describ-

ing the expected influence of preceding events (e.g. words) on future responses (e.g. reading
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times) as a function of their properties and timing. CDRNN retains the deconvolutional de-

sign of CDR while relaxing many of its simplifying assumptions, resulting in a highly flexible

model. Nevertheless, CDRNN can also shed light on the underlying data generating pro-

cess. Results on reading and fMRI measures show substantial generalization improvements

from CDRNN over baselines, along with detailed insights about the underlying dynamics

that cannot easily be obtained from existing methods.

8.1 Background

As argued in Chapter 2, psycholinguists long been aware for decades that processing ef-

fects may lag behind the words that trigger them (Morton, 1964; Bouma and De Voogd,

1974; Rayner, 1977; Erlich and Rayner, 1983; Mitchell, 1984; Rayner, 1998; Vasishth and

Lewis, 2006; Smith and Levy, 2013), possibly because cognitive “buffers” may exist to al-

low higher-level information processing to catch up with the input (Bouma and De Voogd,

1974; Baddeley et al., 1975; Just and Carpenter, 1980; Ehrlich and Rayner, 1981; Mollica

and Piantadosi, 2017). They have also recognized the potential for non-linear, interactive,

and/or time-varying relationships between word features and language processing (Smith

and Levy, 2013; Baayen et al., 2017, 2018). No prior regression method can jointly address

these concerns in non-uniform time series (e.g. words with variable duration) like natural-

istic psycholinguistic experiments. Discrete-time methods (e.g. lagged/spillover regression,

Sims, 1971; Erlich and Rayner, 1983; Mitchell, 1984) ignore potentially meaningful varia-

tion in event duration, even if some (e.g. generalized additive models, or GAMs, Hastie and

Tibshirani, 1986; Wood, 2006) permit non-linear and non-stationary (time-varying) feature

interactions (Baayen et al., 2017). CDR addresses this limitation by fitting continuous-time

IRFs, but it assumes that the IRF is stationary (time invariant), that features scale lin-

early and combine additively, and that the response variance is constant (homoskedastic).

By implementing the IRF as a time-varying neural network, CDRNN relaxes all of these
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assumptions, incorporating the featural flexibility of GAMs while retaining the temporal

flexibility of CDR.

Previous studies have investigated latency and non-linearity in human sentence process-

ing. For example, Smith and Levy (2013) attach theoretical significance to the functional

form of the relationship between word surprisal and processing cost, using GAMs to show

that this relationship is linear and arguing on this basis that language processing is highly

incremental. This claim is under active debate (Brothers and Kuperberg, 2021), underlining

the importance of methods that can investigate questions of functional form. Smith and

Levy (2013) also investigate the timecourse of surprisal effects using spillover and find a

more delayed surprisal response in self-paced reading (SPR) than in eye-tracking. Chap-

ter 4 supports the latter finding using CDR, and in addition show evidence of strong inertia

effects in SPR, such that participants who have been reading quickly in the recent past

also read more quickly now. However, this outcome may be an artifact of the stationarity

assumption: CDR may be exploiting its estimates of rate effects in order to capture broad

non-linear negative trends (e.g. task adaptation, Prasad and Linzen, 2019) in a station-

ary model. Similarly, the generally null word frequency estimates reported in Chapter 4

may be due in part to the assumption of additive effects: word frequency and surprisal

are related, and they may coordinate interactively to determine processing costs (Norris,

2006). Thus, in general, prior findings on the timecourse and functional form of effects

in human sentence processing may be influenced by methodological limitations: the GAM

models of Smith and Levy (2013) ignore variable event duration, the CDR models of Chap-

ter 4 ignore non-linearity, and both approaches assume stationarity, context-independence,

constant variance, and additive effects. By jointly relaxing these potentially problematic

assumptions, CDRNN stands to support more reliable conclusions about human language

comprehension, while also possibly enabling new insights into cognitive dynamics.
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Figure 8.1: CDRNN model. Subscripts omitted to reduce clutter. The IRF g(τ) at an
event computes the expected contribution of each feature of the event vector h(0) to each
element of the parameter vector e of the predictive distribution for a particular response
value. The first layer of the IRF depends non-linearly on the properties of the event via
hin and (optionally) on context via hRNN, which requires the recurrent connections in gray.
Elements with random effects have dotted outlines. For variable definitions, see §8.2.2.

8.2 Model

8.2.1 Architecture

This section presents a high-level description of the model design (formal definition follows).

The CDRNN architecture is represented schematically in Figure 8.1. The primary goal of

estimation is to identify the deep neural IRF (top) that computes the influence of a preceding

event on a subsequent response as a function of their distance in time τ . The IRF depends

on the properties of preceding events via the deep neural projections in the lower part of

the figure. First, the predictors x are concatenated with their timestamps t and submitted

to the model as input. Inputs are cast to a hidden state for each preceding event as the
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Dataset CDR CDRNN-FF CDRNN-RNN
Synth 662 8,162 17,890

NatStor (SPR) 21,845 13,261 31,213
Dundee 2,080 8,012 15,980

NatStor (fMRI) 331 10,352 22,582

Table 8.1: Number of trainable parameters by model and dataset.

sum of three quantities: a feedforward projection hin of each input, a forward-directional

RNN projection hRNN of the events up to and including each input, and random effects

hZ containing offsets for the relevant random effects level(s) (e.g. for each participant in an

experiment). In this study, the recurrent component is treated as optional (gray arrows).

Without the RNN, the model is non-stationary (via input t) but cannot capture context-

dependence.

Each input h(0) is then premultiplied its corresponding IRF g(τ) to produce the expected

contribution of each element of the input vector to each element of the parameter vector e of

the predictive distribution for a particular response (e.g. mean and variance of a univariate

normal response). The summation over the time dimension at the top of the figure ensures

that the model is deconvolutional: each preceding input contributes to the response in some

proportion, with that proportion determined by the features, context, and relative timing of

that input. The dependence of all elements of e on the sequence of timestamped predictors

permits a time-varying (non-constant) response distribution: based on the sequence of

preceding events, the model determines the structure of its own uncertainty about the

response. Because the IRF depends on a deep neural projection of the current stimulus

as well as (optionally) the entire sequence of preceding stimuli, it constitutes a manifold

over the predictor dimensions and time, implicitly estimating all interactions between these

variables in governing the response. Predictors may thus coordinate in a non-linear, non-

additive, and time-varying manner.

Despite their flexibility (above) and task performance (Section 8.4), CDRNN models

used in this study have few parameters (Table 8.1) by current deep learning standards (in
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one case, even fewer parameters than CDR) because they are relatively shallow and small

(§8.2.6).

8.2.2 Mathematical Definition

This section formally defines the CDRNN model.1 CDRNN assumes the following quantities

as input:2

• X ∈ N: Number of predictor observations (e.g. word exposures)

• Y ∈ N: Number of response observations (e.g. fMRI scans)

• Z ∈ N: Number of random grouping factor levels (e.g. distinct participants)

• K ∈ N: Number of predictors

• X ∈ RX×K : Design matrix of X predictor observations of K dimensions each.

• y ∈ RY : Vector of Y response observations

• Z ∈ {0, 1}Y×Z : Boolean matrix indicating random grouping factor levels associated

with each response observation

• t ∈ RX : Vector of timestamps associated with each observation in X

• t′ ∈ RY : Vectors of timestamps associated with each observation in y

• S ∈ N: Number of parameters in predictive distribution (e.g. 2 for a normal distribu-

tion: mean and variance)

For simplicity of exposition, X and y are assumed to contain data from a single time series

(e.g. a single participant performing a single experiment). The definition below can be

1 These equations represent the most recent state of the system. However, results reported in this chapter
were obtained using a slightly different definition. Reproduction using the new definition was not able to
complete in time for inclusion in this thesis, but early outcomes suggest that they yield similar estimates.

2 Throughout these definitions, vectors and matrices are notated in bold lowercase and uppercase,
respectively (e.g. u, U). Objects with indexed names are designated using subscripts (e.g. vr). Vector and
matrix indexing operations are notated using subscript square brackets, and slice operations are notated
using ∗ (e.g. X[∗,k] denotes the kth column of matrix X). Hadamard (pointwise) products are notated using
�. The notations 0 and 1 designate conformable column vectors of 0’s and 1’s, respectively. Superscripts
are used for indexation and do not denote exponentiation.
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applied without loss of generality to data containing multiple time series by concatenating

the output of the model as applied to multiple X, y pairs. X,y and their associated satellite

data Z, t, t′ must be temporally sorted.

Given these inputs, CDRNN estimates a latent impulse response function that relates

timestamped predictors to all parameters of the assumed predictive distribution. For exam-

ple, assuming a univariate normally distributed response, CDRNN learns an IRF with two

output dimensions, one for the predictive mean, and one for the predictive variance. Such

a design (i.e. modeling dependencies on the predictors of all parameters of the predictive

distribution) has previously been termed distributional regression (Bürkner, 2018).

CDRNN contains a recurrent neural network (RNN), neural projections that map inputs

and RNN states to a hidden state for each preceding event, and neural projections that map

the hidden states to predictions about (1) the influence of each event on the response (IRF)

and (2) the parameter(s) of the error distribution (e.g. the variance of a Gaussian error).

The definition assumes the following quantities:

• Lin, LRNN, LIRF, Lε ∈ N: Number of layers in the input projection, RNN, IRF, and

error parameter function, respectively

• Din(`), DRNN(`), Dh, DIRF(`), Derror(`) ∈ N: Number of output dimensions in the `th

layer of the input projection, RNN, hidden state, IRF, and error parameter function,

respectively

The following values are deterministically assigned:

• DIRF(LIRF) = S(K + 1) (the IRF generates a convolution weight for every predictor

dimension, plus the timestamp, for each parameter of the predictive distribution)

• Din(0) = K + 1 (input is predictors + time)

• Din(Lin) = Dh

In these definitions, integers x, y respectively refer to row indices of X, y. Let zy be the

vector
(
Z[y,∗]

)>
of random effects associated with the response at y. Let Wh,Z ∈ RDh×Z ,
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WIRF(1),Z ∈ R2DIRF(1)×Z , and Ws,Z ∈ RS×Z be an embedding matrix for zy. Random effects

offsets at response step y for the hidden state (hZ
y ), the weights and biases of the first layer

of the IRF (w
IRF(1),Z
y , b

IRF(1),Z
y ), and the parameters of the predictive distribution (eZ

y , i.e.

random intercepts and variance parameters) are generated as follows:

hZ
y

def
= Wh,Zzy (8.1)w

IRF(1),Z
y

b
IRF(1),Z
y

 def
= WIRF(1),Zzy (8.2)

sZ
y

def
= Ws,Zzy (8.3)

Following prior work in mixed effects models (Bates et al., 2015), to ensure that population-

level estimates reliably encode central tendency, each output dimension of Wh,Z, WIRF(1),Z,

and Ws,Z is constrained to have mean 0 across the levels of each random grouping factor

(e.g. across participants in the study).

The neural IRF is applied to a temporal offset τ representing the delay at which to

query the response to an input (e.g. τ = 1 queries the response to an input 1s after the

input occurred). The output of the neural IRF g`x,y(τ) ∈ RDIRF(`) applied to τ at layer ` is

defined as:

g(1)
x,y(τ)

def
= sIRF(1)

(
wIRF(1)
x,y τ + bIRF(1)

x,y

)
(8.4)

g(`)
x,y(τ)

def
= sIRF(`)

(
WIRF(`)g(`−1)

x,y (τ) + bIRF(`)
)
, ` > 1 (8.5)

wIRF(1)
x,y

def
= wIRF(1) + wIRF(1),Z

y + W
IRF(1)
∆ hx,y (8.6)

bIRF(1)
x,y

def
= bIRF(1) + bIRF(1),Z

y + B
IRF(1)
∆ hx,y (8.7)

W
IRF(`)
x,y , b

IRF(`)
x,y , and sIRF(`) are respectively the `th IRF layer’s weight matrix at predictor

timestep x and response timestep y, bias vector at time x, y, and squashing function, and

g
(0)
x,y(τ) = τ . wIRF(1), bIRF(1) are respectively globally applied initial weight and bias vectors
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for the first layer of the IRF, which transforms scalar τ , each of which is shifted by its

corresponding random effects. W
IRF(1)
∆ , B

IRF(1)
∆ are respectively weight matrices used to

compute additive modifications to WIRF(1) from CDRNN hidden state hx,y, similar in spirit

to a residual network (He et al., 2016). Non-initial IRF layers are treated as stationary (i.e.

their parameters are independent of x, y). The final output of the IRF is given by:

gx,y(τ)
def
= reshape

(
g(LIRF)
x,y (τ), (S,K + 1)

)
(8.8)

The hidden state hx,y is computed as the squashed sum of several quantities: a global

bias hbias, random effects hZ, a neural projection hin
x,y of the inputs at x, y, and a neural

projection hRNN
x,y of the hidden state of an RNN over the sequence of predictors up to and

including timestep x:

hx,y
def
= sh

(
hbias + hZ

y + hin
x,y + hRNN

x,y

)
(8.9)

The IRF gx,y is therefore feature-dependent via the neural projection hin
x,y of the input at

x, y and context-dependent via the neural projection hRNN
x,y of an RNN over the input up

to x for the response at y. This design relaxes stationarity assumptions while also sharing

structure across timepoints. The definitions of hin
x,y and hRNN

x,y are given below.

Let tx be the element t[x] and xx be the xth predictor vector
(
X[x,∗]

)>
. The inputs h

(0)
x,y

to the CDRNN model are defined as the vertical concatenation of the predictors xx and the

event timestamp tx:

h(0)
x,y

def
=

xx

tx

 (8.10)

The output of the input projection at layer l and time x, y is defined as:

hin(`)
x,y

def
= sin(`)

(
Win(`)hin(`−1)

x,y + bin(`)
)

(8.11)
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where h
in(0)
x,y

def
= h

(0)
x,y. At the final layer, sin(Lin) is identity and bin(Lin) = 0, since hx,y

already has a bias. The final output of the input projection is given by:

hin
x,y

def
= hin(Lin)

x,y (8.12)

Note that hin
x,y is already non-stationary by virtue of its dependence on the event times-

tamp t[x], which allows the IRF to differ between timepoints (see e.g. Baayen et al., 2017,

for development of a similar idea using generalized additive models). While this model of

non-stationarity can be complex and non-linear, it is still limited by context-independence.

That is, the change in the IRF over time depends only on the amount of time elapsed

since the start of the time series, independently of which events preceded. However, it is

possible that the contents of the events in a time series may influence the IRF, above any

deterministic change in response over time (for example, if several difficult preceding words

have already taxed the processing buffer, additional processing costs may become larger).

To account for this possibility, an RNN is built into the CDRNN design.3 Any variant of

RNN can be used (this study uses a long short-term memory network, or LSTM, Hochreiter

and Schmidhuber, 1997). The `th RNN hidden state at x, y is designated by h
RNN(`)
x,y . To

account for the possibility of random variation in sensitivity to context, the initial hidden

and cell states h
RNN(`)
0,y , c

RNN(`)
0,y depend on the random effects:

h
RNN(`)
0,y

def
= h

RNN(`)
0 + W

RNNh(`)
Z zy (8.13)

c
RNN(`)
0,y

def
= c

RNN(`)
0 + W

RNNc(`)
Z zy (8.14)

where h
RNN(`)
0 , c

RNN(`)
0 are global biases and W

RNNh(`)
Z , W

RNNc(`)
Z are constrained to have

mean 0 within each random grouping factor.

3The experiments in this study also consider a variant without the RNN component, which is mathemat-
ically equivalent to setting hRNN

x,y = 0.
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Non-initial RNN states are computed via a standard LSTM update:

[
hRNN(`)
x,y , cRNN(`)

x,y

]
def
= LSTM

(
h

RNN(`)
x−1,y , c

RNN(`)
x−1,y ,hRNN(`−1)

x,y

)
(8.15)

The hidden state of the final RNN layer is linearly projected to the dimensionality of the

CDRNN hidden state:

hRNN
x,y

def
= WRNNprojhRNN(LRNN)

x,y (8.16)

To apply the CDRNN model to data, a mask F ∈ {0, 1}Y×X admits only those obser-

vations in X that precede each y[y]:

F[y,x]
def
=


1 t[x] ≤ t′[y]

0 otherwise

(8.17)

Letting τx,y denote the temporal offset between the predictors at x and the response at y,

i.e. τx,y
def
= t′[y] − t[x]. A total of S(K + 1) sparse convolution matrices Gs,k ∈ RY×X are

defined to contain the predicted response to each preceding event for the kth dimension of

h
(0)
x,y and the sth parameter of the predictive distribution, masked by F:

Gs,k
def
=


g1,1(τ1,1)[s,k] · · · gX,1(τX,1)[s,k]

...
. . .

...

g1,Y (τ1,Y )[s,k] · · · gX,Y (τX,Y )[s,k]

� F (8.18)

The convolved design matrix X′(s) ∈ RY×(K+1) for the sth parameter of the predictive

distribution is then computed as:

X
′(s)
[∗,k]

def
= Gs,k [X, t][∗,k] (8.19)

Vector s ∈ RS contains global, population-level estimates of the parameters of the
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predictive distribution. Under the univariate normal predictive distribution assumed in

this study, s contains the predictive mean (µ, i.e. the intercept) and variance (σ2):

s
def
=

 µ
σ2

 (8.20)

Matrix SZ contains random predictive distribution parameter estimates for the yth response

sZ
y :

SZ def
=


sZ

1
>

...

sZ
Y
>

 (8.21)

The vector of values for each response y for the sth predictive distribution parameter is given

by summing the population value, random effects values, and convolved response values:

S[∗,s]
def
= X′(s)1 + SZ

[∗,s] + s[s] (8.22)

Given an assumed distributional family F (here assumed to be univariate normal), the

response in the CDRNN model is distributed as:

y ∼ F
(
S[∗,1], . . . ,S[∗,S]

)
(8.23)

8.2.3 Asynchronously Measured Predictor Dimensions

As discussed in Chapter 3, CDR applies straightforwardly to time series with asynchronous

predictor vectors and response values (i.e. measured at different times, such as word onsets

that do not align with fMRI scan times). The CDR implementation of Chapter 3 also

supports asynchronously measured dimensions of the predictor matrix, simply by providing

each predictor dimension with its own vector of timestamps. This allows e.g. the analyses

in Chapter 6 to regress linguistic features (which are word-aligned) and sound power (which
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in their definition is measured at regular 100ms intervals) in the same model. Supporting

asynchronously measured predictor dimensions is more challenging in CDRNN, especially

if the RNN component is used. The solution used in CDR is not available because input

dimensions that do not align in time are (1) arbitrarily grouped together and (2) erroneously

treated as steps in the RNN input sequence. A more principled solution is to interleave the

predictors in time order and pad irrelevant dimensions with zeros. For example, in a model

with predictor A and predictor B that are sampled at different times, the values of A and

B are temporally sorted together into a single time series, with the B value of A events set

to zero and the A value of B events set to zero. This approach carries a computational

cost: unlike CDR, the number of inputs to the convolution scales linearly on the number of

asynchronously measured sets of predictors in the model.

8.2.4 Objective and Regularization

Given (1) an input configuration C containing predictors X, input timestamps t, and re-

sponse timestamps t′, (2) CDRNN parameter vector w, (3) output distribution p, and (4)

random effects vector z, the model uses gradient descent to minimize the following objective:

L (y | C; w, z)
def
= − log p (y | C; w, z) + (8.24)

λw||w||22 + λz||z||22

In addition to weight decay governed by λw, λz above, models are regularized using dropout

(Srivastava et al., 2014) with drop rate dh at the outputs of all feedforward hidden layers.

Random effects are also dropped at rate dz. Randomly removing access to random effects

estimates during training is intended to encourage the model to find population-level esti-

mates that accurately reflect central tendency. Finally, the recurrent contribution to the

CDRNN hidden state (hRNN above) is dropped at rate dr, which is intended to encourage

accurate IRF estimation even when context is unavailable.
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8.2.5 Effect Estimation

Because it is a DNN, CDRNN lacks parameters that selectively describe the size and shape

of the response to a specific predictor (unlike CDR), and indeed individual parameters

(e.g. individual biases or connection weights) are not readily interpretable. Thus, from a

scientific perspective, the quantity of general interest is not a distribution over parameters,

but rather over the effect of a predictor on the response. The current study proposes to

accomplish this using perturbation analysis (e.g. Ribeiro et al., 2016; Petsiuk et al., 2018),

manipulating the input configuration and quantifying the influence of this manipulation on

the predicted response.4 For example, to obtain an estimate of rate effects (i.e. a “base”

response estimating effects of stimulus timing, see Chapter 3), a reference stimulus can be

constructed, and the response to it can be queried at each timepoint over some interval of

interest. To obtain CDR-like estimates of predictor-wise IRFs, the reference stimulus can

be increased by 1 in the predictor dimension of interest (e.g. word surprisal) and requeried,

taking the difference between the obtained response and the reference response to reveal

the influence of an extra unit of the predictor. 5 This study uses the training set mean of x

and t as a reference, since this represents the response of the system to an average stimulus.

The model also supports arbitrary additional kinds of queries, including of the curvature of

an effect in the IRF over time and of the interaction between two effects at a point in time.

Indeed, the IRF can be queried with respect to any combination of values for predictors, t,

and τ , yielding an open-ended space of queries that can be constructed as needed by the

4Perturbation analyses is one of a growing suite of tools for black box interpretation. It is used here
because it straightforwardly links properties of the input to changes in the estimated response, providing a
highly general method for querying aspects of the the non-linear, non-stationary, non-additive IRF defined
by the CDRNN equations.

5Note that 1 is used here to maintain comparability of effect estimates to those generated by methods
that assume linearity of effects (especially CDR), but that 1 has no special meaning in the non-linear
setting of CDRNN modeling, and effects can be queried at any offset from any reference. Results here show
that deflections move relatively smoothly away from the reference, even at smaller steps than 1, and that
IRFs queried at 1 are similar to those obtained from (linear) CDR, indicating that this method of effect
estimation is reliable. Note finally that because predictors are underlyingly rescaled by their training set
standard deviations (though plotted at the original scale for clarity), 1 here corresponds to 1 standard unit,
as was the case with the CDR estimates discussed in Chapter 4.
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researcher.

Because the estimates of interest all derive from the model’s predictive distribution,

uncertainty about them can be measured with Monte Carlo techniques as long as training

involves a stochastic component, such as dropout (Srivastava et al., 2014) or batch nor-

malization (Ioffe and Szegedy, 2015). This study estimates uncertainty using Monte Carlo

dropout (Gal and Ghahramani, 2016), which recasts training neural networks with dropout

as variational Bayesian approximation of deep Gaussian process models (Damianou and

Lawrence, 2013). At inference time, an empirical distribution over responses to an input is

constructed by resampling the model (i.e. sampling different dropout masks).6

8.2.6 Implementation

The following implementation details are used in these experiments:7

• Python Tensorflow (Abadi et al., 2015) implementation (version 1.13)

• Adam optimizer (Kingma and Ba, 2014) with learning rate 0.01 and default Tensorflow

parameters

• Batch size B = 256

• History window T = 128

• Number of layers LRNN ∈ {0, 1}

• Number of layers Lin = LIRF = Lε = 3

• Dimensions Din(l) = DRNN(l) = Dh = DIRF(l) = Derror(l) = 32

6Initial experiments also explored uncertainty quantification by implemententing CDRNN as a variational
Bayesian DNN. Compared to the methods advocated here, the variational approach was more prone to
instability, achieved worse fit, and yielded implausibly narrow credible intervals.

7T = 128 departs from T = 256 of Chapter 4 because it saves substantially on compute time without
appreciably harming final fit. While B = 32 is a small batch size for a batch-normalized network, the
reduction here occurs over both the batch and time dimensions, yielding a large enough sample (BT = 4096).
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• Dropout levels dh = dr = dz = 0.01. Higher levels led to strong train/test asymme-

try, including badly underestimated variance and poor likelihood. Nevertheless, even

with such a low level of dropout, models generalize well, and Monte Carlo estimated

confidence intervals are often broad.

• Regularizer levels λw = λz = 10, except for fMRI data where λz = 100.

• sin(l), sRNN(l), sIRF(l), and sIRF(l) are set to identity

• RNN-internal activations follow LSTM defaults (tanh and sigmoid activations, see

Hochreiter and Schmidhuber, 1997)

• All other activations s(·) are defined as a computationally efficient approximation to

the Gaussian error linear unit (GELU, Hendrycks and Gimpel, 2016) used in current

state of the art neural language models (Devlin et al., 2019; Radford et al., 2019):

GELU(v)
def
= v sigmoid(1.702v) (8.25)

• Models use iterate averaging (Polyak and Juditsky, 1992) with exponential moving

average decay rate 0.999 (updates after each minibatch)

• For stability, the norm of the global gradient is clipped at 1.

• To aid training, all predictors and responses are underlyingly standardized (centered

at 0 and divided by their standard deviations).8 These transforms are inverted for

evaluation, visualization, and likelihood computation, allowing model estimates to be

queried on the original scale.

• Convergence is diagnosed following §3.7.2, which defines convergence as lack of statis-

tical correlation with training time over n epochs. Because CDRNN takes an order of

8Although Chapter 3 raises concerns about centering predictors in CDR, they do not apply to CDRNN,
where effects are estimated post hoc from the predictive distribution using perturbation analysis.
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magnitude or more time per epoch than CDR, n was reduced from 500 to 100 vis-a-vis

Chapter 3. Under this criterion, the feedforward implementation of CDRNN usually

converges in about the same amount of clock time as CDR (e.g. ∼10 hrs in a non-GPU

implementation for Natural Stories SPR), and the recurrent implementation usually

takes about 2 times longer.

• 8 cores of Intel Xeon Platinum 8260 2.4GHz for each training run, no GPU. CDRNN-

FF models took around 2-4 hrs to converge on synthetic data, 4-10 hrs to converge

on eye-tracking and fMRI data, and 8-16 hrs to converge on self-paced reading data.

CDRNN-RNN models took about twice as long as to converge as their feedforward

counterparts.

Systematic grid searching was infeasible during model development because of the ex-

istence of multiple simultaneous desiderata for scientific applications: not only good gener-

alization performance, but also numerical stability during training, consistency of solutions

across runs, convergence speed on realistic compute resources (e.g. laptops without GPUs),

plausibility of uncertainty estimates, and robustness of settings to changes of domain. Var-

ious parameters were subjectively searched with respect to these considerations, including

L2 regularization weight (1, 10, 100), dropout rate (0.01, 0.05, 0.1, 0.2), and learning rate

(0.0001, 0.001, 0.01, 0.1). Larger and deeper networks were briefly explored, but dropped

due to both increased training time and a greater propensity to overfit.9 In the end, only

one parameter was adjusted for a specific domain: the random effects in fMRI were more

heavily regularized (see §8.2.6). The fMRI dataset is noisy, and rich random effects struc-

tures can lead to severe overfitting Chapters 4 and 6. Dev set performance revealed a

substantial benefit in fMRI from increasing λz, which was therefore done. While it is in

principle desirable for a regression method to work in a new domain “out of the box”, it

is well known that DNNs often benefit from domain-specific tuning. Thus, even if a single

9For more complex analyses than those attempted here (e.g. models with dozens/hundreds/+ predictors
or of very complex IRFs from high-frequency data), more expressive architectures may be warranted.
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parameterization had ended up working well for all domains explored here, this could not

rule out poor fit to some other domain. Nonetheless, the fact that this was the only pa-

rameter that differed across domains suggests that the settings used here are likely a good

starting point for future researchers, even those who lack tuning data.

8.3 Methods
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Following Chapter 4, CDRNN is applied to naturalistic human language processing data

from three experimental modalities: the Natural Stories self-paced reading corpus (∼1M

instances, Futrell et al., 2020), the Dundee eye-tracking corpus (∼200K instances, Kennedy

et al., 2003), and the Natural Stories fMRI corpus (∼200K instances, Chapter 6), using the

train/dev/test splits for these corpora defined in Chapter 4. Further details about datasets

and preprocessing are given in Chapter 4.

For reading data, CDRNN is compared to CDR as well as lagged LME and GAM

baselines equipped with four spillover positions for each predictor (values from the cur-

rent word, plus three preceding words), since LME and GAM are well established analysis

methods in psycholinguistics (e.g. Baayen et al., 2007; Demberg and Keller, 2008; Smith

and Levy, 2013; Baayen et al., 2017; Goodkind and Bicknell, 2018, inter alia). Because

the distribution of reading times is heavy-tailed (Frank et al., 2013), following Chapter 4

models are fitted to both raw and log-transformed reading times. For fMRI data, CDRNN

is compared to CDR as well as four existing techniques for analyzing naturalistic fMRI

data: pre-convolution with the canonical hemodynamic response function (HRF, Brennan

et al., 2012; Willems et al., 2015; Henderson et al., 2015, 2016; Lopopolo et al., 2017), linear

interpolation (Chapter 4), binning (Wehbe et al., 2020), and Lanczos interpolation (Huth

et al., 2016). Statistical model comparisons use paired permutation tests of test set error

(Demšar, 2006).

Models use predictors from Chapters 4 and 6, redefined below for convenience. The

following predictors are common to all models presented here:

• Rate (CDR/NN only): The deconvolutional intercept, i.e. the base response to a

stimulus, independent of its features. In CDR, rate is estimated explicitly by fitting

an IRF to intercept vector (Chapter 3, i.e., implicitly, the response when all predictors

are 0). In CDRNN, rate is a reference response, computed by taking the response to

an average stimulus (since the zero vector may unlikely for a given input distribution,

using it as a reference may not reliably reflect the model’s domain knowledge). In
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this study, all other IRF queries subtract out rate in order to show deviation from the

reference.

• Unigram surprisal: The negative log of the smoothed context-independent proba-

bility of a word according to a unigram KenLM model (Heafield et al., 2013) trained

on Gigaword 3 (Graff et al., 2007). While this quantity is typically treated on a fre-

quency or log probability scale in psycholinguistics, it is treated here on a surprisal

(negative log prob) scale simply for easy of comparison with 5-gram surprisal (below),

even though it is not a good estimate of the quantity typically targeted by surprisal

(contextual predictability), since context is ignored.

• 5-gram surprisal: The negative log of the smoothed probability of a word given

the four preceding words according to a 5-gram KenLM model (Heafield et al., 2013)

trained on Gigaword 3 (Graff et al., 2007).

The following predictor is used in all reading models:

• Word length: The length of the word in characters.

The following predictors are used in eye-tracking models:

• Saccade length: The length in words of the incoming saccade (eye movement),

including the current word.

• Previous was fixated: Indicator for whether the most recent fixation was to the

immediately preceding word.

Replications of Chapter 6 use the following additional predictors:

• PCFG surprisal: Lexicalized probabilistic context-free grammar surprisal computed

using the incremental left-corner parser of van Schijndel et al. (2013) trained on a

generalized categorial grammar (Nguyen et al., 2012) reannotation of Wall Street

Journal sections 2 through 21 of the Penn Treebank (Marcus et al., 1993).
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• Sound power: Stimulus sound power (root mean squared energy), averaged over

250ms intervals. This implementation differs slightly from that of Chapter 6, who

sampled the measure every 100ms. The longer interval is designed to provide coverage

over the extent of the HRF in this study, which uses a shorter history window for

computational reasons (128 timesteps instead of 256). Both for computational reasons,

especially under CDRNN-RNN (§8.2.3) and because prior sound power estimates in

this dataset have been weak (Chapters 4 and 6), sound power is omitted from models

used in the main comparison.

The deconvolutional intercept term rate, an estimate of the general influence of observing

a stimulus at a point in time, independently of its properties, is implicit in CDRNN (unlike

CDR) and is therefore reported in all results. Reading models include random effects by

subject, while fMRI models include random effects by subject and by functional region of

interest (fROI). Unlike LME, where random effects capture linear differences in effect size

between e.g. subjects, random effects in CDRNN capture differences in overall dynamics

between subjects, including differences in size, IRF shape, functional form (e.g. linearity),

and relation to other effects.

Two CDRNN variants are considered in all experiments: the full model (CDRNN-RNN)

containing an RNN over the predictor sequence, and a feedforward only model (CDRNN-

FF) with the RNN ablated (gray arrows removed in Figure 8.1). This manipulation is of

interest because CDRNN-FF is both more parsimonious (fewer parameters) and faster to

train, and may therefore be preferred in the absence of prior expectation that the IRF

is sensitive to context. All plots show means and 95% confidence intervals. Code and

documentation are available at https://github.com/coryshain.
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8.4 Results

As argued in Chapter 4, since CDRNN is designed for scientific modeling, the principal

output of interest is the IRF itself and the light it might shed on questions of cognitive

dynamics, rather than on performance in some task (predicting reading latencies or fMRI

measures are not widely targeted engineering goals). However, predictive performance can

help establish the trustworthiness of the IRF estimates. To this end, following the analyses

in Chapter 4, this section first performs two sanity checks: (1) evaluating recovery of ground

truth IRFs from synthetic data, and (2) evaluating predictive performance on human data

relative to existing regression techniques. While results may resemble “bake-off” compar-

isons familiar from machine learning (and indeed CDRNN does outperform all baselines),

their primary purpose is to establish that the CDRNN estimates are trustworthy, since

they describe the phenomenon of interest in a way that generalizes accurately to an unseen

sample. Baseline models, including CDR, are as reported in Chapter 4.10

8.4.1 Model Validation A: Synthetic Evaluation

CDRNN models are fitted to a subset of synthetic datasets from Chapter 4. Figure 8.2

shows IRFs from CDRNN models fitted to a representative subset of the synthetic manipu-

lations in Chapter 4: responses with Gaussian noise with standard deviation 10 (σε = 10),

asynchronous and non-uniform time series with mean interval 500ms (Async), and correla-

tion of 0.75 between each pair of the 20 predictors in the model (ρ = 0.75). Respectively,

these manipulations assess the model’s ability to recover the true impulse response structure

in the presence of noise, complex temporal structure, and multicollinearity. The true model

in each case, along with (non-neural) CDR estimates, are presented for reference.

Several observations emerge. First, both feedforward (FF) and recurrent (RNN) ver-

sions of CDRNN recover much of the underlying model, suggesting that CDRNN is capable

10 For all datasets, the CDR baseline used here is the model variant that was deployed on the test set in
the original study.
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Figure 8.2: Synthetic Data. True vs. estimated models under (top) Gaussian noise with
standard deviation 10, (middle) asynchronous time series with ∼500ms intervals, and (bot-
tom) multicollinearity of ρ = 0.75.

of impulse response identification. Second, while CDRNN-FF closely approximates the

ground truth model, it gets less fine-grained detail than CDR. This is because the synthetic

data from Chapter 4 match CDR’s assumptions: IRFs are stationary and belong to a para-

metric family that is known in advance, error is constant, effects are linear, and predictors

combine additively. CDR gets all of this information for free by virtue of its model speci-

fication, while CDRNN must discover these properties of the model from data in spite of

its highly distributed, interactive, and time-varying forward computation. This problem is

even more pronounced in CDRNN-RNN, since the true model is not context-sensitive and

the estimates must learn to ignore context when computing the IRF. The RNN component

contributes substantially to overfitting on these datasets relative to CDRNN-FF and CDR

(hence, poorer IRF recovery), so more data may be necessary in order for CDRNN-RNN

to identify the model across synthetic conditions. Although CDRNN’s flexibility may be

disadvantageous relative to CDR on these simple synthetic datasets, CDRNN still recovers

225



much of the model, while retaining the ability to adapt to human data where the assump-

tions of CDR may no longer hold. Finally, CDRNN’s uncertainty estimates are generally

wider than those of CDR, suggesting empirically that CDRNN may be less susceptible to

anticonservative uncertainty intervals Chapter 3.11 In short, CDRNN provides reasonable

approximations to synthetic data that respect the simplifying assumptions of CDR, despite

the fact that (unlike CDR) it cannot exploit foreknowledge of these constraints.

8.4.2 Model Validation B: Baseline Comparisons

Table 8.2 gives mean squared error by dataset of CDRNN vs. baseline models on reading

times from both Natural Stories and Dundee. Both versions of CDRNN outperform all

baselines on the dev partition of all datasets except for raw (ms) latencies in Natural Stories

(SPR), where CDRNN is edged out by CDR but still substantially outperforms the non-

CDR baselines. Nonetheless, results indicate that CDRNN estimates of Natural Stories (ms)

are similarly reliable to those of CDR, and, as discussed in Section 8.4.3, CDRNN largely

replicates the CDR estimates on Natural Stories while offering advantages for analysis.

Although CDR struggled against GAM baselines on Dundee in Chapter 4, CDRNN

has closed the gap. This is noteworthy in light of speculation in Chapter 4 that CDR’s

poorer performance on Dundee might be due in part to non-linear effects, which GAM can

estimate but CDR cannot. CDRNN performance supports this conjecture: once the model

can account for non-linearities, it overtakes GAMs.

Perhaps the most striking gains appear in the fMRI data (Table 8.3), where both

CDRNN variants yield substantial improvements to training and dev set error. This sug-

gests that the relaxed assumptions afforded by CDR are beneficial for describing the fMRI

11CDRNN plots show a magenta curve not present in the true or CDR plots. This is the deconvolutional
intercept rate, which is present implicitly in all CDRNN models. The underlying model contains no rate
effect, and indeed most models find little effect. Investigation of the exceptions (e.g. the σε = 10, condition,
where models find substantial rate artifacts) is left to future research.
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Figure 8.3: CDRNN estimates across datasets, with CDR estimates from Chapter 4 for
reference. Sound power omitted from CDRNN fMRI models (see §8.3 for justification).

Model Train Expl Test
Canonical HRF 11.3548† 11.8263† 11.5661†

Interpolated 11.4236† 11.9888† 11.6654†

Averaged 11.3478† 11.9280† 11.6090†

Lanczos 11.3536† 11.9059† 11.5871†

CDR 11.2774 11.6928 11.5369
CDRNN-FF 10.6619 11.4298 11.4035

CDRNN-RNN 10.3311 11.4158 —

Table 8.3: fMRI. Mean squared error by model. Baselines as reported in Chapter 4.
Daggers (†) indicate convergence failures.
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Baseline Modality p
LME Reading 0.0001***
GAM Reading 0.0001***

Canonical HRF fMRI 0.0001***
Interpolated fMRI 0.0001***

Averaged fMRI 0.0001***
Lanczos fMRI 0.0001***

CDR Both 0.0001***

Table 8.4: Permutation test of overall performance improvement from CDRNN-RNN over
each baseline.

response, which is known to saturate over time (Friston et al., 2000; Wager et al., 2005;

Vazquez et al., 2006; Lindquist et al., 2009).

Following Chapter 4, model error is statistically compared using a paired permutation

test that pools across all datasets covered by a given baseline (reading data for LME and

GAM, fMRI data for canonical HRF, interpolated, averaged, and Lanczos, and both for

CDR).12 To avoid multiple comparisons, CDRNN-FF alone is evaluated on the test set,

selected because it may be preferred in applications: simpler, faster to train, better at

recovering synthetic models (§8.4.1), and close in performance to CDRNN-RNN. Results

are given in Table 8.4. As shown, CDRNN significantly improves over all baselines. This

result supports the reliability of patterns revealed by CDRNN’s estimated IRF, which is

now used to explore and visualize sentence processing dynamics.

8.4.3 Effect Latencies in CDRNN vs. CDR

CDR-like IRF estimates can be obtained by increasing a predictor by 1 relative to the refer-

ence and observing the change in the response over time. Visualizations using this approach

are presented in Figure 8.3 alongside CDR estimates from Chapter 4. In general, CDRNN

finds similar patterns to CDR. This suggests both (1) that CDRNN is capable of recovering

estimates from a preceding state-of-the-art deconvolutional model for these domains, and

12The comparison rescales each pair of error vectors by their joint standard deviation in order to enable
comparability across datasets with different error variances.
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(2) that CDR estimates in these domains are not driven by artifacts introduced by its sim-

plifying assumptions, since a model that lacks those assumptions and has a qualitatively

different architecture largely recovers them. Nonetheless there are differences. For exam-

ple, Dundee estimates decay more quickly over time in CDRNN than in CDR, indicating

an even less pronounced influence of temporal diffusion in eye-tracking than CDR had pre-

viously suggested. Estimates from CDRNN-FF and CDRNN-RNN generally agree, except

that CDRNN-RNN estimates tend to be more attenuated (especially in fMRI). CDR shows

little uncertainty in the fMRI domain despite its inherent noise Chapter 6, while CDRNN

more plausibly shows more uncertainty in its estimates for the noisier fMRI data.

As noted in Section 8.1, Chapter 4 reports large negative rate effects in reading — i.e., a

local decrease in subsequent reading time at each word, especially in Natural Stories. This

was interpreted as an inertia effect (faster recent reading engenders faster current reading),

but it could conceivably also be an artifact of non-linear decreases in latency over time (due

to task habituation, e.g. Baayen et al., 2017; Harrington Stack et al., 2018; Prasad and

Linzen, 2019) that CDR cannot easily identify. CDRNN estimates suggest that habituation

does not fully explain these patterns and thus support the prior interpretation of rate effects

as inertia, at least in SPR: a model that can flexibly adapt to such trends nonetheless finds

SPR rate estimates that are similar in shape and magnitude to those estimated by CDR. In

eye-tracking, the negative rate effect still emerges, but it is much weaker, suggesting that

eye movements may be less prone than SPR to inertia in reading speed.

In addition, note that CDRNN-FF finds a late-peaking response to word surprisal in

self-paced reading (at around 200ms) but not in eye-tracking. This result converges with

word-discretized timecourses reported in Smith and Levy (2013), who find a peak surprisal

response on the current word in an eye-tracking experiment but on the following word in

an SPR experiment. While CDR and CDRNN-RNN find relatively slow surprisal effects in

SPR, they do not show a late peak. However, CDRNN-FF generalizes better than the other

two variants on this dataset, suggesting that its estimates are more reliable. Results thus
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Figure 8.4: Functional curvature of 5-gram surprisal response

reveal important hidden dynamics in the reading response (inertia effects), continuous-time

delays in peak response, and influences of modality on measures of sentence processing, all of

which are difficult to estimate using existing regression techniques. Greater response latency

and more pronounced inertia effects in self-paced reading may be due to the fact that a

gross motor task (paging via button presses) is overlaid on the sentence comprehension task.

While the motor task is not generally of interest to psycholinguistic theories, controlling

for its effects is crucial when using self-paced reading to study sentence comprehension

(Mitchell, 1984).

8.4.4 Linearity of Surprisal Effects

CDRNN also allows the analyst to explore other aspects of the IRF, such as functional

curvature at a point in time. For example, in the context of reading, Smith and Levy

(2013) argue for a linear increase in processing cost as a function of word surprisal. The

present study allows this claim to be assessed across modalities by checking the curvature
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of the 5-gram surprisal response (in raw ms) at a timepoint of interest (0ms for reading

and ∼5s for fMRI). As shown in the top row of Figure 8.4, reading estimates are consistent

with a linear response (the confidence interval contains a straight line), as predicted, but

are highly non-linear in fMRI, with a rapid peak above the mean (center of x-axis) followed

by a sharp dip and plateau, and even an estimated increased response at values below the

mean (though this component has high uncertainty). This may be due in part to ceiling

effects: blood oxygen levels measured by fMRI are bounded, but reading times are not.

While this is again a property of experimental modality rather than sentence comprehension

itself, understanding such influences is important for drawing scientific conclusions from

experimental data. For example, due to the possibility of saturation, fMRI may not be

an ideal modality for testing scientific claims about the functional form of effects, and the

linearity assumptions of e.g. CDR and LME may be particularly constraining.

The curvature of effects can also be queried over time. If an effect is temporally diffuse

but linear, its curvature should be roughly linear at any delay of interest. The second row of

Figure 8.4 shows visualizations to this effect. These plots in fact subsume previously queried

estimates: univariate IRFs to 5-gram surprisal like those plotted in Figure 8.3 are simply

slices taken at a predictor value (1 unit above the mean), whereas curvature estimates in

the first row of Figure 8.4 are simply slices taken at a time value (0s for reading and 5s for

fMRI). Plots are consistent with the linearity hypothesis for reading, but again show strong

non-linearities in the fMRI domain that are consistent with saturation effects as discussed

above.

8.4.5 Effect Interactions

In addition to exploring multivariate relationships of a predictor with time, relationships

between predictors can also be studied. Such relationships constitute “interactions” in a

CDRNN model, though they are not constrained (cf. interactions in linear models) to be

strictly multiplicative — indeed, a major advantage of CDRNN is that interactions come
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Figure 8.5: Effect interactions in CDRNN replication of Chapter 6.
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“for free”, along with estimates of their functional form. To explore effect interactions,

a CDRNN-FF version of the full model in Chapter 6 is fitted to the fMRI dataset. The

model contains more predictors to explore than models considered above, including surprisal

computed from a probabilistic context-free grammar (PCFG surprisal, see §8.3). Univariate

IRFs are shown in the top left panel of Figure 8.5, and pairwise interaction surfaces at a

delay of 5s (near the peak response) are shown in the remaining panels. Plots show that the

response at any value of the other predictors is roughly flat as a function of sound power

(middle row). This accords with prior arguments that the cortical language system, whose

activity is measured here, does not strongly register low-level perceptual effects (Fedorenko

et al., 2010; Braze et al., 2011).

The estimate for unigram surprisal (middle left) also shows an unexpected non-linearity:

although activity increases with higher surprisal (lower frequency words), it increases much

more at lower surprisal (higher frequency words). This spike is primarily restricted to the

lower part of the range of unigram surprisal values attested in the data (min = 1.29) and

should therefore be interpreted with caution. The response starts to rise well before this

value, however, suggesting the possible existence of high frequency items that nonetheless

engender a large response. The interaction between PCFG surprisal and unigram surprisal

possibly sheds light on this outcome, since it shows a sharp increase in the PCFG surprisal

response for high frequency items. This may be because the most frequent words in English

tend to be function words that play an outsized role in syntactic structure building (e.g.

prepositional phrase attachment decisions).

In addition, 5-gram surprisal interacts with PCFG surprisal, showing a large increase

in response for words that are high on both measures. This is consistent with a unitary

predictive mechanism that sends strong error signals when both string-level (5-gram) and

structural (PCFG) cues are poor. The response is estimated to diminish at high values

(>20) of PCFG surprisal in the bottom center and right plots. High PCFG surprisal values

may be driven by poor automatic parsing, which might create misalignment with human
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subjective surprisal. Again, all these interactions should be interpreted with caution, since

the uncertainty interval covers much weaker degrees of interaction.

8.5 Conclusion

This chapter proposed and evaluated CDRNN, a deep neural extension of continuous-time

deconvolutional regression that relaxes implausible simplifying assumptions made by widely

used regression techniques in psycholinguistics. In so doing, CDRNN provides detailed

estimates of human language processing dynamics that are difficult to obtain using other

measures. Results showed plausible estimates from human data that generalize better than

alternatives and can be brought to bear both for testing existing scientific hypotheses and

exploring hitherto understudied properties of the human sentence processing response. This

outcome suggests that CDRNN may play a valuable role in analyzing human experimental

data.
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Part V

Conclusion
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Chapter 9

Conclusion

In this thesis, I have advocated a dynamical systems perspective on experimental measures

of human language processing and argued that one major challenge emerging from this

perspective is the potential influence of effects with delayed timecourses (i.e. effects that are

temporally diffuse), possibly due to bottlenecks in real-time human information processing

(Bouma and De Voogd, 1974; Ehrlich and Rayner, 1981; Mitchell, 1984; Mollica and Pianta-

dosi, 2017). In Chapter 2, I argued (1) that such timecourses are of theoretical importance

to many questions in psycholinguistics, (2) that failure to account for temporal diffusion

can have a serious impact on the outcome of psycholinguistic hypothesis testing, even for

questions that do not directly concern timecourses, and (3) that existing discrete-time ap-

proaches to measuring effect latencies — such as “spillover” regression — are ill-suited to

many studies of language processing, since stimulus events (words) have variable duration.

In response to these concerns, in Chapter 3 I proposed and implemented a new frame-

work for analyzing experimental measures of human sentence processing: continuous-time

deconvolutional regression (CDR). CDR directly estimates the changing influence of stimuli

on future responses as a function of continuous time, allowing direct application to data

with variably spaced events (e.g. reading time measures) and/or asynchronously measured

predictors and responses. CDR thus both controls for and illuminates the structure of the

dynamics in measures of human sentence processing. In Chapter 4, I presented an empirical

evaluation of the CDR approach and showed that it (1) reliably recovers the ground truth

model from synthetic data, even under adverse training conditions like noise, multicollinear-

ity, and impulse response misspecification, and (2) yields plausible, fine-grained estimates

236



of temporal dynamics in human reading and fMRI data that generalize better than esti-

mates from established tools like linear mixed effects models (LME) and generalized additive

models (GAM).

I then deployed CDR to study the influence of theory-driven variables in reading and

fMRI measures of naturalistic human sentence processing. In Chapter 5, I reported the

results of a CDR analysis of word frequency and predictability effects in three large-scale

public reading time corpora, which did not support the existence of distinct lexical pre-

diction and retrieval mechanisms in naturalistic reading, in contrast to much prior work

using constructed stimuli (Staub, 2015). In Chapters 6 and 7, I analyzed a large-scale fMRI

dataset with respect to the existence and functional specificity of theory-driven measures

of language processing difficulty. Chapter 6 used CDR to investigate (1) whether surprisal

effects register primarily in a language-specialized cortical network or a multiple demand

network that houses domain general executive control and (2) whether surprisal effects are

sensitive to syntactic structure independently of string-level co-occurrence patterns. Re-

sults showed both string-level and structural sensitivity in surprisal effects in the functional

language network, but no sensitivity to either kind of surprisal in the multiple demand

network, supporting the existence of predictive mechanisms for language that are structure

sensitive and domain-specific. Chapter 7 investigated the role of syntax-related memory re-

trieval in naturalistic sentence comprehension, finding a substantial effect of integration cost

(a measure of retrieval difficulty) over strong controls for word predictability. This result

again obtained only in the language (but not the MD) network, supporting a central role for

working memory in naturalistic language comprehension, with working memory resources

that reside in dedicated, language-specific cortical circuits, rather than in domain-general

executive areas.

In Chapter 8, I proposed and evaluated a deep neural extension of CDR — the continuous-

time regressive neural network (CDRNN) — that relaxes many of the simplifying as-

sumptions of CDR while retaining its deconvolutional interpretation. Results showed that
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CDRNN generalizes better than CDR, LME, and GAM baselines on human data, while

supporting novel and theoretically relevant insights about the functional form of effects

and effect interactions over time that are difficult to obtain using other methods. CDRNN

is thus a promising next step toward detailed modeling of human experimental measures

within a dynamical systems framework.

There are several feasible directions in which the research program advanced in this

thesis might be extended in future work. First, a major potential untapped application

area for CDR research in language processing and cognition is high temporal resolution

measures like electroencephalography (EEG), electrocorticography (ECoG), and magne-

toencephalography (MEG), all of which reveal fine-grained fluctuations in neuronal activity

more directly than the fMRI measures considered here. These measures are well known

to exhibit systematic deviations that unfold over time in response to an event (Kutas and

Hillyard, 1980): event-related potentials (ERPs) in EEG or event-related fields (ERFs) in

MEG (for simplicity, henceforth jointly called ERPs). For example, the well-known n400

ERP component, so named because it is realized as a negative deflection of electrical po-

tential peaking around 400ms after stimulus onset, has been reported in response to a wide

range of linguistic manipulations (see Kutas and Federmeier, 2011, for review). ERPs are

continuous-time impulse response functions, much like those that initially motivated the

CDR design. Because of the inherent latency in some ERP components, responses almost

certainly overlap during typical sentence comprehension (Smith and Kutas, 2015). Stan-

dard designs in EEG research reduce this overlap experimentally by presenting words one

by one at an unnaturally slow rate (Kutas and Hillyard, 1984), including in studies explic-

itly attempting to improve naturalness (Frank et al., 2015). CDR, by contrast, stands to

support ERP identification even in truly naturalistic designs where responses are free to

overlap, since it has been shown here to do so accurately from synthetic data that are known

to exhibit such overlaps and from human data that likely exhibit such overlaps. CDR may

thus enable more widespread use of e.g. free reading or naturalistic auditory presentation
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of stimuli in electrophysiological studies of human sentence processing.

A second direction for future research is to implement the CDR equivalent of logistic

regression. This would enable the use of CDR to study the lingering influence of stimuli

on the probabilities associated with discrete events, such as the probability of executing a

regressive eye movement during reading. Doing so simply requires replacing the normal pre-

dictive distribution of eq. 3.7 with e.g. a binomial distribution whose parameter is generated

via convolution of the predictors over time.

A third direction for future research is to support multidimensional response variables

(that is, where each response is a vector rather than a scalar). As in logistic regression,

this requires a change of predictive distribution. In this case, one approach would be to

require the model to generate the mean of a multivariate normal distribution, with variance-

covariance parameters learned from data. Similarly, in the context of logistic regression,

multivariate CDR models could be used to learn distributions over many categories (rather

than just two).

A final direction for future research is to use CDR for neural decoding (Mitchell et al.,

2008), i.e. making inferences about mental representations on the basis of brain signals

alone. Standard approaches in this domain use isolated stimulus presentation (e.g. of a

single picture or word) along with a form of finite impulse response modeling that fits

timestep-specific classifier weights (Mitchell et al., 2008). Thanks to its ability to recover

response dynamics from data in which responses overlap, CDR might enable direct decod-

ing of the mental representations associated with words in running speech, thus shedding

light on the changes in mental state that are of direct relevance to theories of incremental

sentence processing (Gibson, 2000; Lewis and Vasishth, 2005; Levy, 2008). CDRNN-based

decoders additionally stand to relax the spatial independence assumptions of standard de-

coding studies, which regularly use linear regression/classification in order to maintain

interpretability as to which brain regions encode the constructs of interest (e.g. Pereira

et al., 2018). CDRNN might serve as a deeper, more flexible neural network model that
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can account for non-linear interactions between voxels in representing a construct, while

still supporting spatial inferences thanks to the perturbation analysis approach discussed

in Chapter 8.

In sum, in addition to the merits of the CDR(NN) approach established empirically in

this thesis, there are many more potential application areas in which CDR might fruitfully

shed light on the timecourses of human mental representations associated with language

processing. CDR(NN) therefore stands to further illuminate core questions in the study of

language and the mind.
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