Robust Effects of Working Memory Demand in Language-Selective Cortex Cory Shain¹, Idan Asher Blank², Evelina Fedorenko¹, Edward Gibson¹, William Schuler³

Shain, Blank, Fedorenko, Gibson & Schuler (2022). Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex. Journal of Neuroscience.

BACKGROUND

Structure-building in working memory (WM) may drive incremental processing difficulty (Gibson 00, Lewis & Vasishth 05).

But...

- Apparent WM effects may be driven by surprisal (-log p(word | context); Hale 01, Levy08)

- Naturalistic reading evidence is mixed (Demberg & Keller 08, van Schijndel & Schuler 13)

- Neural substrates of WM for language are unclear (language-specific or domain-general; Just & Carpenter 92, Caplan & Waters 99)?

MAIN QUESTIONS

Do surprisal-independent WM effects register in brain activity?

If so, are neural substrates specialized for language processing?

METHODS

fMRI responses to naturalistic story listening (data from Shain, Blank et al 20)

Participant-specific functional localization of language (LANG; domain-specific) and multiple demand (MD, domain-general) cortical networks (masks shown in **Panel A**) Strong surprisal controls:

- 5-gram
- Probabilistic context-free grammar (PCFG)
- RNN ("adaptive"; van Schijndel & Linzen 17)
- GPT-2-XL

¹MIT, ²UCLA, ³OSU

RESULTS

of memory retrieval (DLT integration cost) in **LANG**

vs MD

CONCLUSION

demand during naturalistic story listening

as a core component of language processing

no WM effect in a domain-general brain network (MD) that has previously been implicated in WM tasks across domains