
Robust Effects of Working Memory Demand in Language-Selective Cortex
C. Shain1, I. Blank2, E. Fedorenko1, E. Gibson1, W. Schuler3 1MIT, 2UCLA, 3OSU
To understand language, we must infer structured meanings from real-time auditory or visual sig-
nals. Researchers have long focused on word-by-word structure building in working memory (WM)
as a mechanism that might enable this feat [7, 11, 13]. However, some have argued that language
processing does not typically involve rich word-by-word structure building [17, 6], and/or that ap-
parent WM effects are underlyingly driven by surprisal (how predictable a word is in context) [9].
Consistent with this alternative, some recent behavioral studies of naturalistic language processing
that control for surprisal have not shown clear WM effects [2, 18, 15].

In this fMRI study, we investigate signatures of word-by-word WM demand during naturalis-
tic language comprehension under rigorous surprisal controls. In addition, we address a related
debate about whether the WM mechanisms involved in language comprehension are primarily
specialized for language [10, 19, 1] or domain general [8, 16, 4]. To do so, we examine a large
public dataset (78 subjects) of fMRI responses to naturalistic story listening [14]. In each partici-
pant, we functionally localize (1) the language-selective network [5] and (2) the “multiple-demand”
(MD) network [3], which supports WM across domains and is therefore the most plausible candi-
date domain-general network to support WM for language.

Investigating general WM involvement is challenging because estimators of WM demand for
language are highly theory-dependent. To address this, we divide our analysis protocol into ex-
ploratory and generalization phases (Fig 1B), using continuous-time deconvolutional regression
(CDR) [15] for hemodynamic response estimation. In the exploratory phase, we consider a diverse
set of 22 WM predictors derived from three existing theories of sentence processing with broad-
coverage computational implementations: the Dependency Locality Theory [7], ACT-R theory [11],
and left-corner parsing theories [13]. From these, we select those predictors that significantly im-
prove fit to the training data (p < 0.05) for follow-up evaluation. In the generalization phase, we
statistically evaluate the contribution of predictors selected during the exploratory phase to the fit
of pre-trained CDR models on unseen data, using the same 50-50 data split as in [14].

In the language network, the exploratory phase selected two predictors (integration cost and
storage cost according to the Dependency Locality Theory [7]) for further evaluation. In the MD
network, no WM predictor met criteria for further evaluation. We thus find no evidence of MD
involvement in WM for language processing. Results of the generalization phase are shown in
Fig 1A,C. Integration cost (a measure of syntactic dependency length) is significant in the lan-
guage network over rigorous surprisal controls, including surprisals derived from a large trans-
former language model (GPT-2-XL [12]), supporting surprisal-independent effects of memory de-
mand on language network activity. Storage cost is not significant in the language network, and
neither WM predictor is significant in the MD network. The language network response to integra-
tion cost is significantly larger than the MD network response in direct comparisons.

Results therefore show robust surprisal-independent effects of memory demand in the lan-
guage network and no effect of memory demand in the multiple-demand network. Our findings
thus support the view that language comprehension involves computationally demanding word-
by-word structure building operations in working memory, in addition to any prediction-related
mechanisms. Further, these memory operations appear to be primarily conducted by the same
neural resources that store linguistic knowledge, with no evidence of involvement of brain regions
known to support working memory across domains.
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Figure 1: The critical working memory result (A), with reference estimates for surprisal variables
and other controls shown in C. Dots show estimates for specific functional regions of interest, and
error bars represent 95% credible intervals. A schematic illustration of the analysis procedure is
shown in B.
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