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The difficulty of processing a word is related to its predictability in context [19, 5, 17, 2], but why
do predictability effects exist? In one view, predictability effects reflect anticipatory facilitation of
structure-building operations in working memory when words are highly predictable from context
[2]. In another view, predictability effects reflect the cost of probabilistic inference over a vast space
of possible sentence interpretations [7, 11]. If predictability effects reflect facilitation, they should
be primarily driven by predictable words, since little advance processing can be done when pre-
dictability is low. Indeed, a linear facilitation on next-word predictability falls out from either single-
guessing or proportional preactivation prediction strategies [17, 2]. By contrast, if predictability
effects reflect the costs of probabilistic inference, they should primarily be driven by unpredictable
words, since these words convey more information about how to update the interpretation distri-
bution. Such theories predict either a logarithmic [17] or superlogarithmic [9] (i.e., rapidly increas-
ing) cost as predictability decreases, depending on whether these costs are hypothesized to be
linked to the surprisal (negative log probability) of a word (logarithmic), or to surprisal plus addi-
tional pressures favoring uniform information density (UID, superlogarithmic). Evidence is currently
mixed, with studies supporting linear [2], logarithmic [17], and superlogarithmic [9] predictability
effects, or some combination of the above [18]. Here we revisit this question at scale by analyz-
ing 6 naturalistic English reading datasets [10, 17, 4, 12, 6, 1], estimating surprisal using diverse
language models [8, 20, 15, 21, 3], and applying advanced nonlinear regression techniques [16].

As shown in Fig 1a, across datasets and language models, regressions find a largely logarith-
mic predictability (linear surprisal) effect. To go beyond visualization, we compare the likelihood
assigned by each regression model to an unseen test set, relative to a baseline model contain-
ing no predictability measure. Results plotted in Fig 1b show the performance of models with
no constraints on the estimated predictability-cost function (f(SURP)) compared to models that
are constrained to be linear on probability (PROB) or some fixed exponent of surprisal (SURP1/2,
SURP3/4, SURP1, SURP4/3, SURP2). In comparisons across all datasets (bottom right), (i) both
the f(SURP) models (which generally find logarithmic effects, Fig 1a) and the strictly logarithmic
SURP1 models substantially and significantly outperform models that are linear on predictability
(PROB), and (ii) unconstrained f(SURP) models do not improve on strictly logarithmic SURP1 mod-
els. We also find that logarithmic (SURP1) or slightly sublogarithmic (SURP3/4) models significantly
outperform superlogarithmic models (SURP4/3, SURP2), contrary to the predictions of UID (cf.,
e.g., [13, 9]; slightly sublogarithmic effects are not predicted by any current theory of language
processing). We also highlight two important incidental findings. First, GPT-2(-small) substan-
tially and significantly outperforms GPT-3 as a model of human reading, even though GPT-3 has
1000x more parameters, is trained on more data, and has lower perplexity. This suggests that
very large transformer language models may be super-human at next-word prediction, which may
harm their psychometric performance. Second, GPT-2 substantially and significantly outperforms
human cloze estimates in the only dataset that provides them (Provo [12]), in line with recent find-
ings [14, 18], suggesting that advanced statistical language models may be preferable to cloze as
estimators of human subjective surprisal.

In conclusion, results using large datasets and advanced modeling primarily support a log-
arithmic effect of word predictability [17], such that small absolute differences in low probability
translate to large differences in processing cost, as indexed by reading time. This outcome favors
an interpretation of predictability effects as primarily reflecting the costs of probabilistic inference,
rather than facilitation at highly predictable words. Results also yield evidence against the super-
logarithmic effects predicted by UID, and thus do not support the hypothesis that comprehension
processes favor uniform information density.
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(a) CDRNN-estimated functional form of surprisal (x-
axis) effects on reading times (y-axis) across lan-
guage model types (n-gram, PCFG, GPT-2, GPT-J,
GPT-3, and human cloze) with no delay (i.e. at the
surprising word). Kernel density plots show the dis-
tribution of surprisal values in the training data over
the plotted range.

(b) Change in test set log likelihood as a function of
(i) language model and (ii) predictability-cost function
over a baseline model containing no predictability
measure. Error bars show standard deviation across
the ensemble of 10 CDRNN models.
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