Prediction in the language network is sensitive to syntactic structure
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According to many models of human sentence processing, the mind incrementally computes syntactic rep-
resentations during language comprehension and uses them to guide expectations about upcoming words
[13, 17, 24]. This position is supported by experimental evidence of responses to syntactic manipulations,
both in the reading record [20, 12, 3] and in neural measures [19, 9, 23, 1, 21], including manipulations
that directly target syntactic influences on expectations [30]. However, evidence from naturalistic studies for
syntax-sensitivity in participants’ expectations about future words has been more mixed: while some stud-
ies have found evidence that probabilities generated by a probabilistic context free grammar (PCFG) parser
explain variance in the human sentence processing response [14, 25, 5, 32, 2, 16], others have argued
that these effects can largely be explained on the basis of surface-level word co-occurrence statistics alone
and have questioned the extent to which everyday sentence comprehension relies on hierarchical syntactic
representations [6, 7, 8]. A recent large-scale naturalistic fMRI study showed that contextual predictability
modulates the neural response in left-hemisphere language (LANG) regions but not in bilateral multiple
demand (MD) regions [27]. However, their 5-gram predictability estimate emphasizes lexical co-occurrence
patterns at the expense of syntactic structure, since it cannot directly model grammatical categories, syn-
tactic composition, or dependencies longer than 5 words. In this study, we reanalyze the data from [27]
and show that PCFG estimates of word predictability explain substantial variance in the neural response
above 5-grams alone, suggesting that participants did exploit top-down estimates of syntactic structure to
guide interpretations and supporting the hypothesis that such structures are computed rapidly and online
during everyday sentence processing. As in [27], these effects are restricted to the language network, not
the multiple demand network, suggesting that even top-down structural constraints are locally encoded in
the language circuits, rather than relying on domain-general executive control.

The dataset analyzed in [27] contains fMRI timecourses from 78 participants (30 males) who first com-
pleted a localizer task designed to identify participant-specific functional regions of interest (fROIs): six
left-hemisphere fronto-temporal language areas and twenty bilateral fronto-parietal multiple demand areas.
Participants then listened to audio presentation of materials from the Natural Stories corpus [10]. Neural
measures during story listening were recorded by an fMRI scanner and analyzed using continuous-time
deconvolutional regression (CDR) [26, 29], a technique that estimates continuous hemodynamic response
functions (HRFs) directly from naturalistic data. CDR models include a fixed and by-fROI slope for TR
number (scan index), HRF shape parameters by fROI, and fixed and by-fROI HRF amplitudes for both (1)
control variables rate (deconvolutional intercept term), sound power (root mean squared energy of audio
stimuli), and word frequency, as well as (2) critical variables 5-gram surprisal and PCFG surprisal. Word
frequency and 5-gram models are estimated using KenLM [15] trained on Gigaword 3 [11], while PCFG
models are estimated using an incremental left-corner parser [31] trained on sections 2 through 21 of the
Wall Street Journal corpus [18] reannotated into a cognitively-inspired generalized categorical grammar
[22]. The explanatory contribution of both surprisal measures is assessed using an ablative bootstrap test
of likelihood in a held-out dataset, quantifying the degradation in generalization performance from removing
fixed effects for one or both surprisal measures.

As shown in Figure 1 and Table 1, both 5-gram surprisal and PCFG surprisal significantly and inde-
pendently modulate the neural response in the language network, while neither significantly modulates the
neural response in the multiple-demand network. A further ablative comparison of combined models of re-
sponses in both regions shows that the difference between the networks is significant. In addition, by-fROI
analyis shows that the LANG model explains held-out variance in 5/6 fROls, while the MD model explains
held-out variance in only 1/20 fROls (see [28] for more detailed analysis of individual fROIs). Together,
these results align with studies cited above in supporting the existence of predictive mechanisms for lan-
guage processing that compute and condition on syntactic structures during ordinary sentence processing,
not just under constructed syntactic manipulations. Furthermore, they show that these mechanisms reside
primarily in neural circuits that specialize for language processing, rather than in domain-general multiple-
demand circuits whose activity scales with overall cognitive load [4]. This finding illuminates prior arguments
that language processing relies on a domain-general and even species-general capacity for hierarchic se-
quential prediction [31, 24]: our study suggests that, at least in the case of hierarchical language structure,
this general capacity is nevertheless locally implemented in specialized neural language circuits.
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Figure 1: Estimated hemodynamic response functions by network. Although the PCFG surprisal estimate

is positive in MD, it is not significant (Table 1) and the full model explains no held-out variance.

LANG MD
Comparison | Estimate p \ Estimate p
5-gram over neither | 0.307 0.0001*** | 0.019 0.137
PCFG over neither | 0.352 0.0001*** | 0.081 1.0
5-gram over PCFG | 0.209 0.0001*** | -0.025 1.0
PCFG over 5-gram | 0.235 0.0001*** | 0.097 1.0

Table 1: Held-out permutation testing results. Estimate comes from the full model in each comparison.
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