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Background

• Although language is used to convey and infer meaning,
existing work on naturalistic sentence processing focuses
on lexical and/or structural determinants of
comprehension difficulty.
• Lexical frequency [6, 20]
• Parse probability [5, 23]
• Dependency locality [3, 19]

• Incremental semantic decisions are harder to estimate
from corpora.

• Vectorial word representations have been shown to
contain semantic information [14, 12] and predict human
responses [16, 1, 18, 4].

• To the extent that word vectors map to human semantic
space, they can help us study the incremental cost of
moving around that space.

Methods

• Embed all content words using 300d GloVe vectors [17]
pretrained on the 840B word Common Crawl dataset.

• Compute mean vector distance between current word and
all content words preceding it in the sentence.

• Transform reading times with Box-Cox [2].
• Testing procedure: Ablative likelihood ratio testing of

linear mixed effects models
• Fixed effects: Word length, position in sentence, 5-gram

surprisal (KenLM [10] trained on Gigaword 3 [9]), and
PCFG surprisal ([22] parser trained on WSJ [13]
re-annotated into Generalized Categorial Grammar [15]),
plus (eye-tracking only) saccade length and accumulated
surprisal [21]

• Random effects: Slopes for all of the above by subject,
by-subject and by-word random intercepts

• Spillover optimization: Spillover position optimized on
exploratory data using fixed effects models. All
predictors remained in situ except: Dundee (5-gram
surprisal spillover-1), UCL (saccade length spillover-1),
and Natural Stories (PCFG surprisal spillover-1). Main
effects were spillover-1.

Data

• Three reading time corpora:
• Natural Stories [8]

• Constructed narratives, self-paced reading, 181 subjects, 485 sentences,
10,245 tokens, 848,768 fixation events

• Post-processing: Removed sentence boundaries, events for which subjects
missed 4+ comprehension questions and fixations < 100 ms or > 3000 ms.

• Dundee [11]
• Newspaper editorials, eye-tracking, 10 subjects, 2,368 sentences, 51,502

tokens, 260,065 fixation events
• Post-processing: Removed document, screen, sentence, and line boundaries

• UCL [7]
• Sentences from novels presented in isolation, eye-tracking, 42 subjects, 205

sentences, 1,931 tokens, 53,070 fixation events
• Post-processing: Removed sentence boundaries

• Data split: 1/3 exploratory, 2/3 confirmatory

Question

Does semantic distance of a word from its context cause processing difficulty during naturalistic reading?

Corpus β̂-ms semantic distance t p

Natural Stories 1.25 2.766 0.006

Dundee 5.73 4.759 5.59e-4

UCL 16.36 7.853 2.76e-10
Table 1: Likelihood ratio testing results for mean semantic cosine distance on Natural Stories, Dundee, and UCL. Reading times were transformed using [2] and β̂-ms was computed by
backtransformation, and is therefore only valid at the backtransformed mean, holding all other effects at their means.
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Figure 1: Visual illustration of computation of semantic distance. Content words (left) are cast into real-valued vectors (center) using GloVe.
The semantic distance of the word England in this example is computed as the mean cosine distance of the embedding of England from the
embeddings of its preceding content words (were, journey, and North). Non-content words are treated as having distance 0.

Incremental 5-gram surprisal:

you would come to a valley that is surrounded by

moors as high as mountains.
Incremental semantic distance:

you would come to a valley that is surrounded by moors as

high as mountains.
Figure 2: Visual illustration of the actual 5-gram surprisal (top) and semantic distance (bottom) values from the end of the first sentence of the
Natural Stories corpus, where large font indicates large value. Although both measures flag content-bearing words, there are important
differences. For example, moors, a low-frequency word in corpora, has a high surprisal value but relatively low semantic distance from
preceding words like valley, while surrounded has low surprisal but high semantic distance.

Discussion

• We find positive effects and significant contributions to model fit across corpora, suggesting a replicable contribution of
semantic distance to processing load.

• Result consistent with at least two (possibly compatible) interpretations
• Traversing the semantic space might be costly, since semantic targets may not have been primed through spreading activation
• Semantic distance may partially estimate semantic predictability, and therefore improve on baseline estimates of incremental surprisal.

• Future advances in automatic incremental semantic parsing may help tease apart these possibilities.
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