Retrieving structures from memory causes difficulty during incremental processing

Cory Shain1, Marten van Schijndel1, Richard Futrell2, Edward Gibson2, and William Schuler1

1Dept of Linguistics, The Ohio State University
2Dept of Brain and Cognitive Sciences, Massachusetts Institute of Technology

Based on Shain et al. 2016

1 Apr. 2017, CUNY 2017
Hypothesis: Memory access in incremental parsing causes reading time delays.

- Predicted by a number of theories of sentence processing (e.g. Gibson 2000; Johnson-Laird 1983).
- Supported by numerous previous studies (e.g. Grodner and Gibson 2005; Boston et al. 2011; von der Malsburg, Kliegl, and Vasishth 2015).
Hypothesis: Memory access in incremental parsing causes reading time delays.

Predicted by a number of theories of sentence processing (e.g. Gibson 2000; Johnson-Laird 1983).

Supported by numerous previous studies (e.g. Grodner and Gibson 2005; Boston et al. 2011; von der Malsburg, Kliegl, and Vasishth 2015).
Introduction

+ **Hypothesis:** Memory access in incremental parsing causes reading time delays.
+ Predicted by a number of theories of sentence processing (e.g. Gibson 2000; Johnson-Laird 1983).
+ Supported by numerous previous studies (e.g. Grodner and Gibson 2005; Boston et al. 2011; von der Malsburg, Kliegl, and Vasishth 2015).
Conclusion

- Memory retrieval effects exist in human sentence processing.
This work was supported by grants from the National Science Foundation: Graduate Research Fellowship Program Award DGE-1343012 to MvS; Doctoral Dissertation Research Improvement Award 1551543 to RF; Linguistics Program Award 1534318 to EG.
So why are we still working on this?
Introduction

- **Previous findings:** Mixed.
 - **Constructed stimuli:** Strong effects
 - **Naturally-occurring stimuli:** Weak/null/negative effects
Introduction

- **Previous findings:** Mixed.
 - **Constructed stimuli:** Strong effects
 - **Naturally-occurring stimuli:** Weak/null/negative effects
Introduction

- **Previous findings:** Mixed.
 - **Constructed stimuli:** Strong effects
 - **Naturally-occurring stimuli:** Weak/null/negative effects
Introduction

Potential weaknesses in each type of stimulus

Constructed:
- Limited domain (e.g. relative clauses)
- Confounds from lack of context or semantic strangeness
- Lack of information theoretic controls (e.g. surprisal)

Naturally-occurring:
- Limited number of subjects (10 in Dundee)
- 'Easy' stimuli

Potential weaknesses in each type of stimulus

Constructed:
- Limited domain (e.g. relative clauses)
- Confounds from lack of context or semantic strangeness
- Lack of information theoretic controls (e.g. surprisal)

Naturally-occurring:
- Limited number of subjects (10 in Dundee)
- ‘Easy’ stimuli
Potential weaknesses in each type of stimulus

Constructed:
- Limited domain (e.g. relative clauses)
- Confounds from lack of context or semantic strangeness
- Lack of information theoretic controls (e.g. surprisal)

Naturally-occurring:
- Limited number of subjects (10 in Dundee)
- "Easy" stimuli
Introduction

Potential weaknesses in each type of stimulus

- **Constructed:**
 - Limited domain (e.g. relative clauses)
 - Confounds from lack of context or semantic strangeness
 - Lack of information theoretic controls (e.g. surprisal)

- **Naturally-occurring:**
 - Limited number of subjects (10 in Dundee)
 - 'Easy' stimuli
Introduction

+ Potential weaknesses in each type of stimulus
 + **Constructed:**
 + Limited domain (e.g. relative clauses)
 + Confounds from lack of context or semantic strangeness
 + Lack of information theoretic controls (e.g. surprisal)
 + **Naturally-occurring:**
 + Limited number of subjects (10 in Dundee)
 + "Easy" stimuli
Potential weaknesses in each type of stimulus

Constructed:
- Limited domain (e.g. relative clauses)
- Confounds from lack of context or semantic strangeness
- Lack of information theoretic controls (e.g. surprisal)

Naturally-occurring:
- Limited number of subjects (10 in Dundee)
- ‘Easy’ stimuli
Introduction

Potential weaknesses in each type of stimulus

Constructed:
- Limited domain (e.g. relative clauses)
- Confounds from lack of context or semantic strangeness
- Lack of information theoretic controls (e.g. surprisal)

Naturally-occurring:
- Limited number of subjects (10 in Dundee)
- ‘Easy’ stimuli
Introduction

- Potential weaknesses in each type of stimulus
 - **Constructed:**
 - Limited domain (e.g. relative clauses)
 - Confounds from lack of context or semantic strangeness
 - Lack of information theoretic controls (e.g. surprisal)
 - **Naturally-occurring:**
 - Limited number of subjects (10 in Dundee)
 - ‘Easy’ stimuli
Introduction

Different theories of sentence processing

- The Dependency Locality Theory (DLT): Cost as function of dependency length.
- Left-corner parsing: Cost as function of parser operations that involve memory retrieval.
- Many plausible implementations of the cost function
Introduction

Different theories of sentence processing

- **The Dependency Locality Theory (DLT):** Cost as function of dependency length.
- **Left-corner parsing:** Cost as function of parser operations that involve memory retrieval.

- Many plausible implementations of the cost function
Different theories of sentence processing

- **The Dependency Locality Theory (DLT):** Cost as function of dependency length.
- **Left-corner parsing:** Cost as function of parser operations that involve memory retrieval.

Many plausible implementations of the cost function
Introduction

- Different theories of sentence processing
 - The Dependency Locality Theory (DLT): Cost as function of dependency length.
 - Left-corner parsing: Cost as function of parser operations that involve memory retrieval.
- Many plausible implementations of the cost function
Introduction

This work:

- ‘Constructed-natural’ stimuli (Natural Stories corpus) (Futrell et al. in prep).
- Predictor selection on exploratory data.
- Baseline information theoretic controls.
This work:

- ‘Constructed-natural’ stimuli (Natural Stories corpus) (Futrell et al. in prep).
- Predictor selection on exploratory data.
- Baseline information theoretic controls.
Introduction

- This work:
 - ‘Constructed-natural’ stimuli (Natural Stories corpus) (Futrell et al. in prep).
 - Predictor selection on exploratory data.
 - Baseline information theoretic controls.
Introduction

This work:

- ‘Constructed-natural’ stimuli (Natural Stories corpus) (Futrell et al. in prep).
- Predictor selection on exploratory data.
- Baseline information theoretic controls.
We find strong broad-coverage evidence in self-paced reading (SPR) of:

- Locality-based DLT effect.
- Locality-independent left-corner effect.
We find strong broad-coverage evidence in self-paced reading (SPR) of:

- Locality-based DLT effect.
- Locality-independent left-corner effect.
We find strong broad-coverage evidence in self-paced reading (SPR) of:

- Locality-based DLT effect.
- Locality-independent left-corner effect.
Plan

Introduction
Experimental setup
The Dependency Locality Theory
Left-corner parsing
Conclusion
Plan

Introduction

Experimental setup

The Dependency Locality Theory

Left-corner parsing

Conclusion
Experimental setup: The Natural Stories corpus

- Experiments used Natural Stories corpus (Futrell et al. in prep):
 - Constructed-natural stimuli:
 - Fluent narrative text
 - Memory-intensive constructions
 - SPR data collected
 - 10 texts, 10257 words, 181 subjects, 848,207 events
- Partitioned into exploratory (1/3) and confirmatory (2/3) corpora
- First evaluated all predictors on exploratory using LME regression.
- All results are in spillover 1 position.
Experimental setup: The Natural Stories corpus

Experiments used Natural Stories corpus (Futrell et al. in prep):
+ Constructed-natural stimuli:
 + Fluent narrative text
 + Memory-intensive constructions
+ SPR data collected
 + 10 texts, 10257 words, 181 subjects, 848,207 events
+ Partitioned into exploratory (1/3) and confirmatory (2/3) corpora
+ First evaluated all predictors on exploratory using LME regression.
+ All results are in spillover 1 position.
Experimental setup: The Natural Stories corpus

- Experiments used Natural Stories corpus (Futrell et al. in prep):
 - Constructed-natural stimuli:
 - Fluent narrative text
 - Memory-intensive constructions
 - SPR data collected
 - 10 texts, 10257 words, 181 subjects, 848,207 events
- Partitioned into exploratory (1/3) and confirmatory (2/3) corpora
- First evaluated all predictors on exploratory using LME regression.
- All results are in spillover 1 position.
Experimental setup: The Natural Stories corpus

- Experiments used Natural Stories corpus (Futrell et al. in prep):
 - Constructed-natural stimuli:
 - Fluent narrative text
 - Memory-intensive constructions
 - SPR data collected
 - 10 texts, 10257 words, 181 subjects, 848,207 events
- Partitioned into exploratory (1/3) and confirmatory (2/3) corpora
- First evaluated all predictors on exploratory using LME regression.
- All results are in spillover 1 position.
Experimental setup: The Natural Stories corpus

Experiments used Natural Stories corpus (Futrell et al. in prep):

+ Constructed-natural stimuli:
 + Fluent narrative text
 + Memory-intensive constructions

+ SPR data collected
 + 10 texts, 10257 words, 181 subjects, 848,207 events

+ Partitioned into exploratory (1/3) and confirmatory (2/3) corpora

+ First evaluated all predictors on exploratory using LME regression.

+ All results are in spillover 1 position.
Experimental setup: The Natural Stories corpus

- Experiments used Natural Stories corpus (Futrell et al. in prep):
 - Constructed-natural stimuli:
 - Fluent narrative text
 - Memory-intensive constructions
 - SPR data collected
 - 10 texts, 10257 words, 181 subjects, 848,207 events
- Partitioned into exploratory (1/3) and confirmatory (2/3) corpora
- First evaluated all predictors on exploratory using LME regression.
- All results are in spillover 1 position.
Experimental setup: The Natural Stories corpus

- Experiments used Natural Stories corpus (Futrell et al. in prep):
 - Constructed-natural stimuli:
 - Fluent narrative text
 - Memory-intensive constructions
 - SPR data collected
 - 10 texts, 10257 words, 181 subjects, 848,207 events
- Partitioned into exploratory (1/3) and confirmatory (2/3) corpora
- First evaluated all predictors on exploratory using LME regression.
- All results are in spillover 1 position.
Experimental setup: The Natural Stories corpus

- Experiments used Natural Stories corpus (Futrell et al. in prep):
 - Constructed-natural stimuli:
 - Fluent narrative text
 - Memory-intensive constructions
 - SPR data collected
 - 10 texts, 10257 words, 181 subjects, 848,207 events
- Partitioned into exploratory (1/3) and confirmatory (2/3) corpora
- First evaluated all predictors on exploratory using LME regression.
- All results are in spillover 1 position.
Experimental setup: The Natural Stories corpus

- Experiments used Natural Stories corpus (Futrell et al. in prep):
 - Constructed-natural stimuli:
 - Fluent narrative text
 - Memory-intensive constructions
 - SPR data collected
 - 10 texts, 10257 words, 181 subjects, 848,207 events
- Partitioned into exploratory (1/3) and confirmatory (2/3) corpora
- First evaluated all predictors on exploratory using LME regression.
- All results are in spillover 1 position.
Plan

Introduction
Experimental setup
The Dependency Locality Theory
Left-corner parsing
Conclusion
The Dependency Locality Theory: Background

- DLT (Gibson 2000): Difficulty by dependency length (# discourse referents (DR))
- Intuition: Older things are harder to access in memory
- For simplicity, DR = nouns and finite verbs
- Integration cost is sum of:
 - Discourse cost: 1 for nouns/verbs, 0 otherwise
 - Dependency length: Length in DR of all dependencies with preceding words
The Dependency Locality Theory: Background

+ DLT (Gibson 2000): Difficulty by dependency length (# discourse referents (DR))
+ Intuition: Older things are harder to access in memory
+ For simplicity, DR = nouns and finite verbs
+ **Integration cost** is sum of:
 - Discourse cost: 1 for nouns/verbs, 0 otherwise
 - Dependency length: Length in DR of all dependencies with preceding words
The Dependency Locality Theory: Background

- DLT (Gibson 2000): Difficulty by dependency length (# discourse referents (DR))
- Intuition: Older things are harder to access in memory
- For simplicity, DR = nouns and finite verbs
- Integration cost is sum of:
 - Discourse cost: 1 for nouns/verbs, 0 otherwise
 - Dependency length: Length in DR of all dependencies with preceding words
The Dependency Locality Theory: Background

- DLT (Gibson 2000): Difficulty by dependency length (# discourse referents (DR))
- Intuition: Older things are harder to access in memory
- For simplicity, DR = nouns and finite verbs
- **Integration cost** is sum of:
 - **Discourse cost**: 1 for nouns/verbs, 0 otherwise.
 - **Dependency length**: Length in DR of all dependencies with preceding words
The Dependency Locality Theory: Background

+ DLT (Gibson 2000): Difficulty by dependency length (# discourse referents (DR))
+ Intuition: Older things are harder to access in memory
+ For simplicity, DR = nouns and finite verbs
+ **Integration cost** is sum of:
 + **Discourse cost**: 1 for nouns/verbs, 0 otherwise.
 + **Dependency length**: Length in DR of all dependencies with preceding words
The Dependency Locality Theory: Background

- DLT (Gibson 2000): Difficulty by dependency length (# discourse referents (DR))
- Intuition: Older things are harder to access in memory
- For simplicity, DR = nouns and finite verbs
- **Integration cost** is sum of:
 - **Discourse cost:** 1 for nouns/verbs, 0 otherwise.
 - **Dependency length:** Length in DR of all dependencies with preceding words
The Dependency Locality Theory: Example

Yesterday, the **person supervisors** and **co-workers caught** stealing **millions fled**.

Dependency length = 4 (4 intervening DR (bold))
The Dependency Locality Theory: Results
The Dependency Locality Theory: Results

<table>
<thead>
<tr>
<th></th>
<th>β (ms)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLT</td>
<td>0.466</td>
<td>1.11e-05</td>
</tr>
</tbody>
</table>

Reliable broad-coverage DLT effect
The Dependency Locality Theory: Results

<table>
<thead>
<tr>
<th></th>
<th>β (ms)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLT</td>
<td>0.466</td>
<td>1.11e-05</td>
</tr>
<tr>
<td>DLT (modified)</td>
<td>1.13</td>
<td>4.87e-10</td>
</tr>
</tbody>
</table>

Reliable broad-coverage DLT effect
Plan

Introduction
Experimental setup
The Dependency Locality Theory
Left-corner parsing
Conclusion
Left-corner parsing

Popular model of sentence processing

Left-corner parsing

- Popular model of sentence processing
Maintains a store of derivation fragments $a/b, a'/b', \ldots$, each consisting of active category a lacking awaited category b.

Incrementally assembles trees by forking/joining fragments.
Maintains a store of derivation fragments a/b, a'/b', …, each consisting of active category a lacking awaited category b.

Incrementally assembles trees by forking/joining fragments.
Left-corner parsing: Example

NP

the
Left-corner parsing: Example

NP

N

the dog
Left-corner parsing: Example

NP

N

the
dog
Left-corner parsing: Example

NP

the dog
Left-corner parsing: Example

NP

the dog
Left-corner parsing

- Many plausible predictor implementations (see Shain et al. 2016)
- Best predictor on exploratory: “no fork”
 - Top sign must be recalled from memory
 - Flags right edges of constituents
 - Boolean (locality-independent)
Left-corner parsing

+ Many plausible predictor implementations (see Shain et al. 2016)
+ Best predictor on exploratory: “no fork”
 + Top sign must be recalled from memory
 + Flags right edges of constituents
 + Boolean (locality-independent)
Left-corner parsing

- Many plausible predictor implementations (see Shain et al. 2016)
- Best predictor on exploratory: “no fork”
 - Top sign must be recalled from memory
 - Flags right edges of constituents
 - Boolean (locality-independent)
Many plausible predictor implementations (see Shain et al. 2016)

Best predictor on exploratory: “no fork”

- Top sign must be recalled from memory
- Flags right edges of constituents
- Boolean (locality-independent)
Left-corner parsing

- Many plausible predictor implementations (see Shain et al. 2016)
- Best predictor on exploratory: “no fork”
 - Top sign must be recalled from memory
 - Flags right edges of constituents
 - Boolean (locality-independent)
Left-corner parsing: Results

<table>
<thead>
<tr>
<th></th>
<th>β (ms)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLT</td>
<td>0.466</td>
<td>1.11e-05</td>
</tr>
<tr>
<td>DLT (modified)</td>
<td>1.13</td>
<td>4.87e-10</td>
</tr>
<tr>
<td>Left corner (no-fork)</td>
<td>3.88</td>
<td>2.33e-14</td>
</tr>
</tbody>
</table>

Reliable broad-coverage left corner effect
No-fork estimate (3.88ms) is entire effect.

DLT effect has a large range (12) but is usually small (95th percentile = 2).

No-fork effect estimate larger for most events, smaller for large DLT.
Left-corner parsing: Results

- No-fork estimate (3.88ms) is entire effect.
- DLT effect has a large range (12) but is usually small (95th percentile = 2).
- No-fork effect estimate larger for most events, smaller for large DLT.
Left-corner parsing: Results

- No-fork estimate (3.88ms) is entire effect.
- DLT effect has a large range (12) but is usually small (95th percentile = 2).
- No-fork effect estimate larger for most events, smaller for large DLT.
The DLT vs. left-corner

+ We seem to have effects from both processing models.
+ These models are often taken to be competing.
+ Maybe they’re measuring the same thing...
The DLT vs. left-corner

- We seem to have effects from both processing models.
- These models are often taken to be competing.
- Maybe they’re measuring the same thing...
The DLT vs. left-corner

- We seem to have effects from both processing models.
- These models are often taken to be competing.
- Maybe they’re measuring the same thing...
The DLT vs. left-corner

+ DLT and left-corner effects are independent via ‘diamond’ LRT.
+ Both effects improve significantly over baseline and over each other.
The DLT vs. left-corner

+ DLT and left-corner effects are independent via ‘diamond’ LRT.
+ Both effects improve significantly over baseline and over each other.
How general are these effects?

Are these effects widespread, or are they driven by particular contexts?
How general are these effects?

<table>
<thead>
<tr>
<th></th>
<th>β-ms</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLT (modified) (N/V removed)</td>
<td>0.353</td>
<td>0.141</td>
</tr>
<tr>
<td>Left corner (no-fork) (N/V removed)</td>
<td>1.17</td>
<td>1.72e-05</td>
</tr>
</tbody>
</table>

+ Left corner effect survives even when nouns and verbs are filtered out.
+ DLT effect does not.
How general are these effects?

<table>
<thead>
<tr>
<th></th>
<th>β-ms</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLT (modified) (N/V removed)</td>
<td>0.353</td>
<td>0.141</td>
</tr>
<tr>
<td>Left corner (no-fork) (N/V removed)</td>
<td>1.17</td>
<td>1.72e-05</td>
</tr>
</tbody>
</table>

- Left corner effect survives even when nouns and verbs are filtered out.
- DLT effect does not.
Plan

Introduction
Experimental setup
The Dependency Locality Theory
Left-corner parsing
Conclusion
Conclusion

- **Main contribution:** First strong evidence of broad-coverage memory effects in sentence processing.
- Supports psychological validity of dependency/constituency.
Conclusion

- **Main contribution:** First strong evidence of broad-coverage memory effects in sentence processing.
- Supports psychological validity of dependency/constituency.
Conclusion

- Significant independent contributions from both DLT and left corner
- Possibly semantics vs. syntax?
 - DLT has access to semantic information like head/dependent, referential status, etc. Left corner does not.
 - DLT effect driven by N/V, which introduces discourse referents.
- Separate contributions might indicate separate mechanisms for (semantic) dependency construction vs. retrieval of syntactic derivations.
Conclusion

- Significant independent contributions from both DLT and left corner
- Possibly semantics vs. syntax?
 - DLT has access to semantic information like head/dependent, referential status, etc. Left corner does not.
 - DLT effect driven by N/V, which introduce discourse referents.
- Separate contributions might indicate separate mechanisms for (semantic) dependency construction vs. retrieval of syntactic derivations.
Conclusion

- Significant independent contributions from both DLT and left corner
- Possibly semantics vs. syntax?
 - DLT has access to semantic information like head/dependent, referential status, etc. Left corner does not.
 - DLT effect driven by N/V, which introduce discourse referents.
- Separate contributions might indicate separate mechanisms for (semantic) dependency construction vs. retrieval of syntactic derivations.
Conclusion

+ Significant independent contributions from both DLT and left corner
+ Possibly semantics vs. syntax?
 + DLT has access to semantic information like head/dependent, referential status, etc. Left corner does not.
 + DLT effect driven by N/V, which introduce discourse referents.
+ Separate contributions might indicate separate mechanisms for (semantic) dependency construction vs. retrieval of syntactic derivations.
Conclusion

+ Significant independent contributions from both DLT and left corner
+ Possibly semantics vs. syntax?
 + DLT has access to semantic information like head/dependent, referential status, etc. Left corner does not.
 + DLT effect driven by N/V, which introduce discourse referents.
+ Separate contributions might indicate separate mechanisms for (semantic) dependency construction vs. retrieval of syntactic derivations.
Acknowledgments

This work was supported by grants from the National Science Foundation: Graduate Research Fellowship Program Award DGE-1343012 to MvS; Doctoral Dissertation Research Improvement Award 1551543 to RF; Linguistics Program Award 1534318 to EG.

Futrell, Richard et al. (in prep). “Natural stories corpus”.

References II

Appendix: Experimental setup

+ Filtered out sentence starts/ends (leaving 768,023 events)
+ Models evaluated via likelihood ratio test (LRT)
+ Reading times transformed by Box and Cox (1964) ($\lambda \approx 0.63$)
+ **Baseline:**

 $\text{boxcox(readingTime)} \sim \text{sentencePosition} + \text{wordLength} + \text{5GramSurp} + \text{pcfgSurp} + (1 + \text{sentenceID} + \text{sentencePosition} + \text{wordLength} + \text{5GramSurp} + \text{pcfgSurp} + \text{mainEffect} \mid \text{subject}) + (1 \mid \text{word}) + (1 \mid \text{sentenceID})$

+ All predictors z-score normalized prior to evaluation
+ β values above are divided by standard deviation and backtransformed into ms, only valid at mean

+ Predictors computed over trees in Generalized Categorial Grammar (GCG) (Nguyen, van Schijndel, and Schuler 2012)
 + Automatically reannotated from Penn Treebank-style gold and hand-corrected
 + Contains implicit dependency and memory store representations, can be used to calculate all predictors from single source
In this study, we consider 3 additional broad-coverage modifications of the DLT:

- **DLT-V**: Verbs are more expensive. Non-finite verbs receive a cost of 1 (instead of 0) and finite verbs receive a cost of 2 (instead of 1).
- **DLT-C**: Coordination is less expensive. Dependencies out of coordinate structures skip preceding conjuncts. Dependencies with intervening coordinations just use heaviest conjunct.
- **DLT-M**: Exclude modifier dependencies. Dependencies to preceding modifiers are ignored.

Modifications can be applied in any combination, yielding 8 implementation variants of the DLT for this study.

Best variant was DLT-C and DLT-M together.
In this study, we consider 3 additional broad-coverage modifications of the DLT:

- **DLT-V**: *Verbs are more expensive*. Non-finite verbs receive a cost of 1 (instead of 0) and finite verbs receive a cost of 2 (instead of 1).
- **DLT-C**: *Coordination is less expensive*. Dependencies out of coordinate structures skip preceding conjuncts. Dependencies with intervening coordinations just use heaviest conjunct.
- **DLT-M**: *Exclude modifier dependencies*. Dependencies to preceding modifiers are ignored.

Modifications can be applied in any combination, yielding 8 implementation variants of the DLT for this study.

Best variant was DLT-C and DLT-M together.
In this study, we consider 3 additional broad-coverage modifications of the DLT:

DLT-V: *Verbs are more expensive.* Non-finite verbs receive a cost of 1 (instead of 0) and finite verbs receive a cost of 2 (instead of 1).

DLT-C: *Coordination is less expensive.* Dependencies out of coordinate structures skip preceding conjuncts. Dependencies with intervening coordinations just use heaviest conjunct.

DLT-M: *Exclude modifier dependencies.* Dependencies to preceding modifiers are ignored.

Modifications can be applied in any combination, yielding 8 implementation variants of the DLT for this study.

Best variant was DLT-C and DLT-M together.
In this study, we consider 3 additional broad-coverage modifications of the DLT:

- **DLT-V**: *Verbs are more expensive*. Non-finite verbs receive a cost of 1 (instead of 0) and finite verbs receive a cost of 2 (instead of 1).
- **DLT-C**: *Coordination is less expensive*. Dependencies out of coordinate structures skip preceding conjuncts. Dependencies with intervening coordinations just use heaviest conjunct.
- **DLT-M**: *Exclude modifier dependencies*. Dependencies to preceding modifiers are ignored.

Modifications can be applied in any combination, yielding 8 implementation variants of the DLT for this study.

Best variant was DLT-C and DLT-M together.
In this study, we consider 3 additional broad-coverage modifications of the DLT:

DLT-V: *Verbs are more expensive.* Non-finite verbs receive a cost of 1 (instead of 0) and finite verbs receive a cost of 2 (instead of 1).

DLT-C: *Coordination is less expensive.* Dependencies out of coordinate structures skip preceding conjuncts. Dependencies with intervening coordinations just use heaviest conjunct.

DLT-M: *Exclude modifier dependencies.* Dependencies to preceding modifiers are ignored.

Modifications can be applied in any combination, yielding 8 implementation variants of the DLT for this study.

Best variant was DLT-C and DLT-M together.
In this study, we consider 3 additional broad-coverage modifications of the DLT:

+ **DLT-V**: *Verbs are more expensive*. Non-finite verbs receive a cost of 1 (instead of 0) and finite verbs receive a cost of 2 (instead of 1).

+ **DLT-C**: *Coordination is less expensive*. Dependencies out of coordinate structures skip preceding conjuncts. Dependencies with intervening coordinations just use heaviest conjunct.

+ **DLT-M**: *Exclude modifier dependencies*. Dependencies to preceding modifiers are ignored.

Modifications can be applied in any combination, yielding 8 implementation variants of the DLT for this study.

Best variant was DLT-C and DLT-M together.
No-fork (shift + match): Word satisfies b. a is complete.

$$\frac{a/b}{a} \ x_t \ b \rightarrow x_t.$$
Yes-fork (shift): Word does not satisfy b, fork off new complete category c.

\[
\frac{a/b}{a/b} \xrightarrow{x_t} \frac{c}{b} \xrightarrow{+} c \ldots ; \quad c \rightarrow x_t.
\]
Yes-join (predict + match): Complete category c satisfies b while predicting b'. Store updates from $⟨\ldots, a/b, c⟩$ to $⟨\ldots, a/b'⟩$.

\[
\frac{a/b \quad c}{a/b'} \quad b \rightarrow c \quad b'.
\]

(+J)
No-join (predict): Complete category c does not satisfy b. Predict new a' and b' from c. Store updates from $\langle \ldots, a/b, c \rangle$ to $\langle \ldots, a/b, a'/b' \rangle$.

\[
\frac{a/b \quad c}{a/b \quad a'/b'} \quad b \xrightarrow{+} a' \ldots \quad ; \quad a' \rightarrow c \ b'.
\]
Appendix: Left-corner predictors

- Memory effects are predicted when signs must be recalled by left-corner parser, but implementation details matter.
- We implemented 3 families of left-corner predictors:
 - EMBD: End of embedded region. True if \(-F+J\) or end of carrier, false otherwise.
 - NoF: No fork \((-F)\) operation. True if \(F\) decision was negative.
 - REINST: Reinforcement operation. Union of EMBD and NoF.
Memory effects are predicted when signs must be recalled by left-corner parser, but implementation details matter.

We implemented 3 families of left-corner predictors:

- **EMBD**: *End of embedded region*. True if –F+J or end of carrier, false otherwise.
- **NoF**: ‘No fork’ (–F) operation. True if F decision was negative.
- **REINST**: *Reinstatement operation*. Union of EMBD and REINST.
Appendix: Left-corner predictors

+ Memory effects are predicted when signs must be recalled by left-corner parser, but implementation details matter.

+ We implemented 3 families of left-corner predictors:
 + **EMBD**: *End of embedded region*. True if –F+J or end of carrier, false otherwise.
 + **NoF**: ‘No fork’ (–F) operation. True if F decision was negative.
 + **REINST**: *Reinstatement operation*. Union of EMBD and REINST.
Memory effects are predicted when signs must be recalled by left-corner parser, but implementation details matter.

We implemented 3 families of left-corner predictors:

- **EMBD**: *End of embedded region*. True if –F+J or end of carrier, false otherwise.
- **NoF**: ‘No fork’ (–F) *operation*. True if F decision was negative.
- **REINST**: *Reinstatement operation*. Union of EMBD and REINST.
Memory effects are predicted when signs must be recalled by left-corner parser, but implementation details matter.

We implemented 3 families of left-corner predictors:

- **EMBD**: End of embedded region. True if –F+J or end of carrier, false otherwise.
- **NoF**: ‘No fork’ (–F) operation. True if F decision was negative.
- **REINST**: Reinstatement operation. Union of EMBD and REINST.
Appendix: Left-corner predictors

+ Also included distance-weighted variants of each of these (since last recall event) by:
 + Number of words
 + Number of DLT discourse referents
 + Number of verb-modified DLT discourse referents

+ $3 \times 4 = 12$ total left-corner predictors.
Appendix: Left-corner predictors

Also included distance-weighted variants of each of these (since last recall event) by:

- Number of words
- Number of DLT discourse referents
- Number of verb-modified DLT discourse referents

$3 \times 4 = 12$ total left-corner predictors.
Appendix: Left-corner predictors

Also included distance-weighted variants of each of these (since last recall event) by:

- Number of words
- Number of DLT discourse referents
- Number of verb-modified DLT discourse referents

$3 \times 4 = 12$ total left-corner predictors.
Appendix: Left-corner predictors

Also included distance-weighted variants of each of these (since last recall event) by:

- Number of words
- Number of DLT discourse referents
- Number of verb-modified DLT discourse referents

$3 \times 4 = 12$ total left-corner predictors.
Appendix: Left-corner predictors

Also included distance-weighted variants of each of these (since last recall event) by:

- Number of words
- Number of DLT discourse referents
- Number of verb-modified DLT discourse referents

\[3 \times 4 = 12 \text{ total left-corner predictors.} \]
Appendix: Full results

<table>
<thead>
<tr>
<th>Canon</th>
<th>Best</th>
<th>Exploratory corpus</th>
<th>Confirmatory corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\beta) \hspace{1cm} (\beta)-ms \hspace{1cm} t-value \hspace{1cm} p-value</td>
<td>(\beta) \hspace{1cm} (\beta)-ms \hspace{1cm} t-value \hspace{1cm} p-value</td>
</tr>
<tr>
<td>NoF-S1</td>
<td>1.23e-4</td>
<td>1.29</td>
<td>6.66</td>
</tr>
<tr>
<td>DLT-CM-S1</td>
<td>1.11e-4</td>
<td>1.16</td>
<td>5.85</td>
</tr>
<tr>
<td>REINST-S1</td>
<td>1.17e-4</td>
<td>1.23</td>
<td>6.33</td>
</tr>
<tr>
<td>DLT-S1</td>
<td>8.04e-5</td>
<td>0.846</td>
<td>4.51</td>
</tr>
</tbody>
</table>