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Introduction

+ Hypothesis: Memory access in incremental parsing causes reading time delays.

+ Predicted by a number of theories of sentence processing (e.g. Gibson 2000;
Johnson-Laird 1983).

+ Supported by numerous previous studies (e.g. Grodner and Gibson 2005; Boston et al.
2011; von der Malsburg, Kliegl, and Vasishth 2015).
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Conclusion

+ Memory retrieval effects exist in human sentence processing.
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Experimental setup: The Natural Stories corpus

+ Experiments used Natural Stories corpus (Futrell et al. in prep):
+ Constructed-natural stimuli:

+ Fluent narrative text
+ Memory-intensive constructions

+ SPR data collected
+ 10 texts, 10257 words, 181 subjects, 848,207 events

+ Partitioned into exploratory (1/3) and confirmatory (2/3) corpora

+ First evaluated all predictors on exploratory using LME regression.

+ All results are in spillover 1 position.
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+ DLT (Gibson 2000): Difficulty by dependency length (# discourse referents (DR))

+ Intuition: Older things are harder to access in memory

+ For simplicity, DR = nouns and finite verbs
+ Integration cost is sum of:

+ Discourse cost: 1 for nouns/verbs, 0 otherwise.
+ Dependency length: Length in DR of all dependencies with preceding words
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The Dependency Locality Theory: Example

Yesterday, the person supervisors and co-workers caught stealing millions fled.

Dependency length = 4 (4 intervening DR (bold))



The Dependency Locality Theory: Results



The Dependency Locality Theory: Results

β (ms) p-value
DLT 0.466 1.11e-05

Reliable broad-coverage DLT effect



The Dependency Locality Theory: Results

β (ms) p-value
DLT 0.466 1.11e-05

DLT (modified) 1.13 4.87e-10

Reliable broad-coverage DLT effect



Plan

Introduction

Experimental setup

The Dependency Locality Theory

Left-corner parsing

Conclusion



Left-corner parsing

+ Popular model of sentence processing
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Gibson (1991), Resnik (1992), Stabler (1994), Lewis and Vasishth (2005), and van
Schijndel, Exley, and Schuler (2013)
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category a lacking awaited category b.

+ Incrementally assembles trees by forking/joining fragments.
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Left-corner parsing: Results

β (ms) p-value
DLT 0.466 1.11e-05

DLT (modified) 1.13 4.87e-10
Left corner (no-fork) 3.88 2.33e-14

Reliable broad-coverage left corner effect
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+ No-fork estimate (3.88ms) is entire effect.

+ DLT effect has a large range (12) but is usually small (95th percentile = 2).

+ No-fork effect estimate larger for most events, smaller for large DLT.
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p = 6.87e-11

+ DLT and left-corner effects are independent via ‘diamond’ LRT.

+ Both effects improve significantly over baseline and over each other.
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Appendix: Experimental setup

+ Filtered out sentence starts/ends (leaving 768,023 events)
+ Models evaluated via likelihood ratio test (LRT)
+ Reading times transformed by Box and Cox (1964) (λ ≈ 0.63)
+ Baseline:
boxcox(readingTime) ∼ sentencePosition + wordLength + 5GramSurp +

pcfgSurp + (1 + sentenceID + sentencePosition + wordLength + 5GramSurp

+ pcfgSurp + mainEffect | subject) + (1 | word) + (1 | sentenceID)

+ All predictors z-score normalized prior to evaluation
+ β values above are divided by standard deviation and backtransformed into ms, only valid

at mean
+ Predictors computed over trees in Generalized Categorial Grammar (GCG) (Nguyen, van

Schijndel, and Schuler 2012)
+ Automatically reannotated from Penn Treebank-style gold and hand-corrected
+ Contains implicit dependency and memory store representations, can be used to calculate

all predictors from single source
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preceding conjuncts. Dependencies with intervening coordinations just use heaviest
conjunct.

+ DLT-M: Exclude modifier dependencies. Dependencies to preceding modifiers are ignored.

+ Modifications can be applied in any combination, yielding 8 implementation variants of the
DLT for this study.

+ Best variant was DLT-C and DLT-M together.
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Left-corner parsing: Fork decision

a

b

xt

No-fork (shift + match): Word satisfies b. a is complete.

a/b xt

a
b → xt . (–F)



Left-corner parsing: Fork decision

a

b

c

xt

Yes-fork (shift): Word does not satisfy b, fork off new complete category c.

a/b xt

a/b c
b

+
→ c ... ; c → xt . (+F)



Left-corner parsing: Join decision

a

b

c b ′

Yes-join (predict + match): Complete category c satisfies b while predicting b ′. Store
updates from 〈. . . , a/b , c〉 to 〈. . . , a/b ′〉.

a/b c
a/b ′

b → c b ′. (+J)



Left-corner parsing: Join decision

a

b
a′

c b ′

No-join (predict): Complete category c does not satisfy b. Predict new a′ and b ′ from c.
Store updates from 〈. . . , a/b , c〉 to 〈. . . , a/b , a′/b ′〉.

a/b c
a/b a′/b ′

b
+
→ a′ ... ; a′ → c b ′. (–J)



Appendix: Left-corner predictors

+ Memory effects are predicted when signs must be recalled by left-corner parser, but
implementation details matter.

+ We implemented 3 families of left-corner predictors:
+ EMBD: End of embedded region. True if –F+J or end of carrier, false otherwise.
+ NoF: ‘No fork’ (–F) operation. True if F decision was negative.
+ REINST: Reinstatement operation. Union of EMBD and REINST.
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+ Also included distance-weighted variants of each of these (since last recall event) by:
+ Number of words
+ Number of DLT discourse referents
+ Number of verb-modified DLT discourse referents

+ 3 × 4 = 12 total left-corner predictors.
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+ 3 × 4 = 12 total left-corner predictors.



Appendix: Full results

Exploratory corpus Confirmatory corpus
β β-ms t-value p-value β β-ms t-value p-value

B
es

t NoF-S1 1.23e-4 1.29 6.66 1.45e-10 1.46e-4 1.54 8.15 2.33e-14
DLT-CM-S1 1.11e-4 1.16 5.85 1.42e-8 9.63e-5 1.10 6.48 4.87e-10

C
an

on REINST-S1 1.17e-4 1.23 6.33 1.60e-9 1.35e-4 1.43 8.01 5.77e-14
DLT-S1 8.04e-5 0.846 4.51 1.03e-05 6.04e-05 0.634 4.50 1.11e-05
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