Measuring the perceptual availability of phonological features during language acquisition using unsupervised binary stochastic autoencoders

Cory Shain and Micha Elsner

NAACL 2019

- No explicit supervision
- Poor lexical and phonotactic knowledge
- Possible answer: By trying to remember what they perceive.
 - Limited memory \rightarrow compression pressure (Baddeley and Hitch (1974))
 - Might favor language-like representations (Bacideley et al. 1996) Elener and Shain 2017)
 - Percept modeling can provide immediate training signal

+ No explicit supervision

- Poor lexical and phonotactic knowledge
- + **Possible answer:** By trying to remember what they perceive.
 - Limited memory \rightarrow compression pressure (Baddeley and Hitch 1974)
 - Night favor language-like representations (Baddeley et al. 1998; Elener and Shah 2017)
 - Percept modeling can provide immediate training signal

- + No explicit supervision
- + Poor lexical and phonotactic knowledge
- **Possible answer:** By trying to remember what they perceive.
 - Limited memory \rightarrow compression pressure (Baddeley and Hitch 1974)
 - anight have letiguege be représentations (Babbelley et let 1996; Elsier auto Shain 1
 - Percept modeling can provide immediate training signal

- + No explicit supervision
- + Poor lexical and phonotactic knowledge

+ **Possible answer:** By trying to remember what they perceive.

- + Limited memory \rightarrow compression pressure (Baddeley and Hitch 1974)
- H Might favor language-like representations (Baddeley et al. 1998; Elsner and Shain 2017)
- Percept modeling can provide immediate training signal

- + How do infants acquire phonological categories and features from speech?
 - + No explicit supervision
 - + Poor lexical and phonotactic knowledge
- + **Possible answer:** By trying to remember what they perceive.
 - + Limited memory \rightarrow compression pressure (Baddeley and Hitch 1974)
 - Might favor language-like representations (Baddeley et al. 1998; Elsner and Shain 2017)
 - Percept modeling can provide immediate training signal

- + How do infants acquire phonological categories and features from speech?
 - + No explicit supervision
 - + Poor lexical and phonotactic knowledge
- + **Possible answer:** By trying to remember what they perceive.
 - + Limited memory \rightarrow compression pressure (Baddeley and Hitch 1974)
 - + Might favor language-like representations (Baddeley et al. 1998; Elsner and Shain 2017)
 - + Percept modeling can provide immediate training signal

- + How do infants acquire phonological categories and features from speech?
 - + No explicit supervision
 - + Poor lexical and phonotactic knowledge
- + **Possible answer:** By trying to remember what they perceive.
 - + Limited memory \rightarrow compression pressure (Baddeley and Hitch 1974)
 - + Might favor language-like representations (Baddeley et al. 1998; Elsner and Shain 2017)
 - + Percept modeling can provide immediate training signal

Lots of evidence for top-down influence on phoneme acquisition (Peperkamp et al. 2006; Swingley 2009; Feldman et al. 2013)

But bottom-up perceptual evidence must also matter

How perceptually available are phoneme categories and phonological features?

- Lots of evidence for top-down influence on phoneme acquisition (Peperkamp et al. 2006; Swingley 2009; Feldman et al. 2013)
- + But bottom-up perceptual evidence must also matter
- + How perceptually available are phoneme categories and phonological features?

- Lots of evidence for top-down influence on phoneme acquisition (Peperkamp et al. 2006; Swingley 2009; Feldman et al. 2013)
- + But bottom-up perceptual evidence must also matter
- + How perceptually available are phoneme categories and phonological features?

+ **Hypothesis:** A learner trying to remember auditory properties of segments will discover theory-driven phonological categories and features.

Experiment: Implement learner as computational model and inspect representations

- + **Hypothesis:** A learner trying to remember auditory properties of segments will discover theory-driven phonological categories and features.
- + Experiment: Implement learner as computational model and inspect representations

+ Deep neural binary stochastic autoencoder network

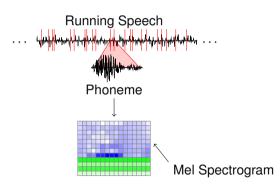
- Compresses auditory features of speech segments into discrete 8-bit code
- Decompresses code into original inputs
- + 256 categories with which to describe perceptual world
- + Model optimizes fidelity
- + Research question: Do the optimized representations look like infants' knowledge of language?

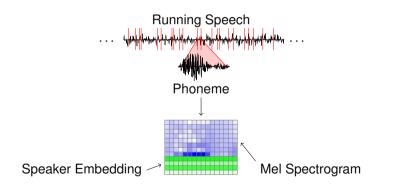
- + Deep neural binary stochastic autoencoder network
- + Compresses auditory features of speech segments into discrete 8-bit code
- Decompresses code into original inputs
- + 256 categories with which to describe perceptual world
- + Model optimizes fidelity
- + Research question: Do the optimized representations look like infants' knowledge of language?

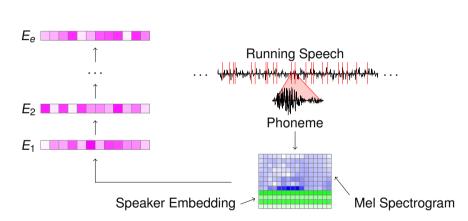
- + Deep neural binary stochastic autoencoder network
- + Compresses auditory features of speech segments into discrete 8-bit code
- + Decompresses code into original inputs
- + 256 categories with which to describe perceptual world
- + Model optimizes fidelity
- + Research question: Do the optimized representations look like infants' knowledge of language?

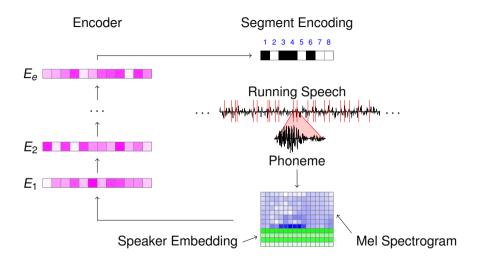
- + Deep neural binary stochastic autoencoder network
- + Compresses auditory features of speech segments into discrete 8-bit code
- + Decompresses code into original inputs
- + 256 categories with which to describe perceptual world
- + Model optimizes fidelity
- + Research question: Do the optimized representations look like infants' knowledge of language?

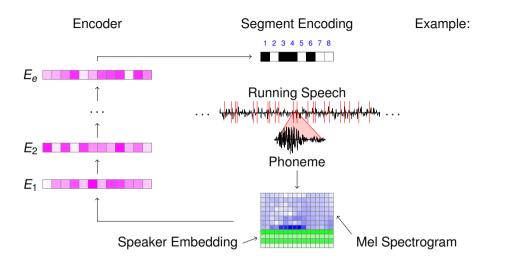

- + Deep neural binary stochastic autoencoder network
- + Compresses auditory features of speech segments into discrete 8-bit code
- + Decompresses code into original inputs
- + 256 categories with which to describe perceptual world
- + Model optimizes fidelity
- + Research question: Do the optimized representations look like infants' knowledge of language?

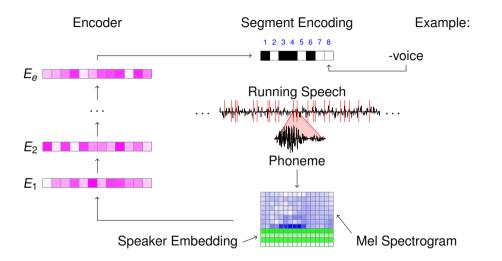

- + Deep neural binary stochastic autoencoder network
- + Compresses auditory features of speech segments into discrete 8-bit code
- + Decompresses code into original inputs
- + 256 categories with which to describe perceptual world
- + Model optimizes fidelity
- + Research question: Do the optimized representations look like infants' knowledge of language?

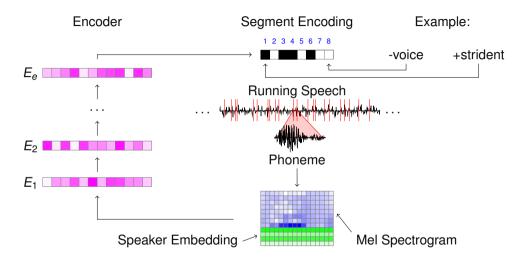

Running Speech

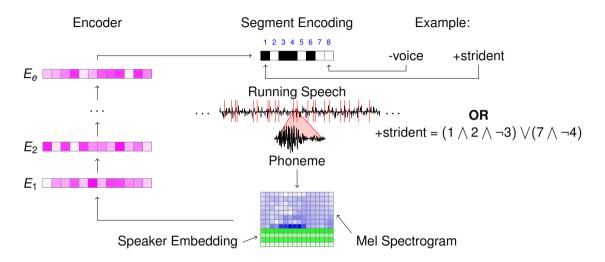


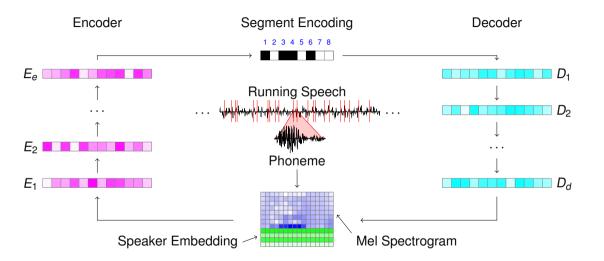









Encoder



+ Zerospeech challenge on unsupervised speech processing (Versteegh et al. 2015)

- Unsupervised phone discovery (Vallabha et al. 2007; Lee and Glass 2012; Feldman et al. 2013; Antetomaso et al. 2017)
- + Word-level modeling
- + Not featural (phonemes are atomic)

- + Zerospeech challenge on unsupervised speech processing (Versteegh et al. 2015)
- + Unsupervised phone discovery (Vallabha et al. 2007; Lee and Glass 2012; Feldman et al. 2013; Antetomaso et al. 2017)
- Word-level modeling
- + Not featural (phonemes are atomic)

- + Zerospeech challenge on unsupervised speech processing (Versteegh et al. 2015)
- + Unsupervised phone discovery (Vallabha et al. 2007; Lee and Glass 2012; Feldman et al. 2013; Antetomaso et al. 2017)
- + Word-level modeling
- + Not featural (phonemes are atomic)

- + Zerospeech challenge on unsupervised speech processing (Versteegh et al. 2015)
- + Unsupervised phone discovery (Vallabha et al. 2007; Lee and Glass 2012; Feldman et al. 2013; Antetomaso et al. 2017)
- + Word-level modeling
- + Not featural (phonemes are atomic)

+ Zerospeech 2015 challenge datasets

- + Xitsonga: ~2.5 hrs read speech, 24 speakers
- English: ~5 hrs spontaneous speech, 12 speakers

+ Zerospeech 2015 challenge datasets

- + Xitsonga: ~2.5 hrs read speech, 24 speakers
 - English: ~5 hrs spontaneous speech, 12 speakers

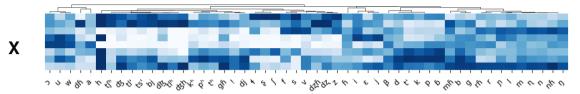
+ Zerospeech 2015 challenge datasets

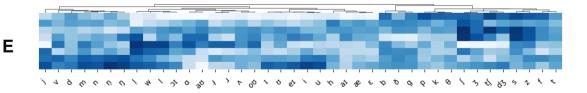
- + Xitsonga: ~2.5 hrs read speech, 24 speakers
- + English: ~5 hrs spontaneous speech, 12 speakers

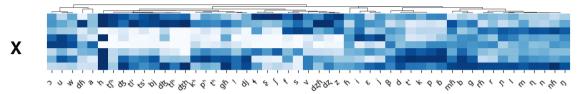
+ Homogeneity (H), Completeness (C), V-measure (V) (Rosenberg and Hirschberg 2007)

	Xitsonga			English		
Model	н	С	V	н	С	V
Baseline	0.023	0.013	0.016	0.006	0.004	0.005
-discrete,-speaker	0.281	0.191	0.227	0.246	0.166	0.198
-discrete,+speaker	0.302	0.185	0.230	0.205	0.180	0.192
+discrete,-speaker	0.360	0.206	0.262	0.240	0.161	0.193
Full model (+discrete,+speaker)	0.462	0.268	0.339	0.270	0.180	0.216

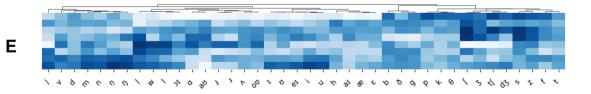
	Xitsonga			English		
Model	н	С	V	н	С	V
Baseline	0.023	0.013	0.016	0.006	0.004	0.005
-discrete,-speaker	0.281	0.191	0.227	0.246	0.166	0.198
-discrete,+speaker	0.302	0.185	0.230	0.205	0.180	0.192
+discrete,-speaker	0.360	0.206	0.262	0.240	0.161	0.193
Full model (+discrete,+speaker)	0.462	0.268	0.339	0.270	0.180	0.216

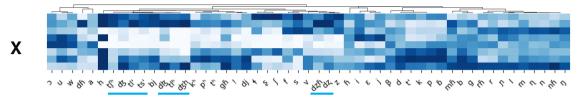

Large relative improvement (20-40x) over random demonstrates clear learning signal.

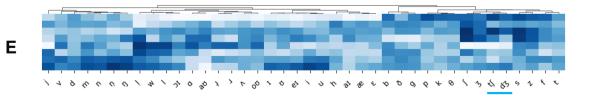

	Xitsonga			English		
Model	н	С	V	Н	С	V
Baseline	0.023	0.013	0.016	0.006	0.004	0.005
-discrete,-speaker	0.281	0.191	0.227	0.246	0.166	0.198
-discrete,+speaker	0.302	0.185	0.230	0.205	0.180	0.192
+discrete,-speaker	0.360	0.206	0.262	0.240	0.161	0.193
Full model (+discrete,+speaker)	0.462	0.268	0.339	0.270	0.180	0.216

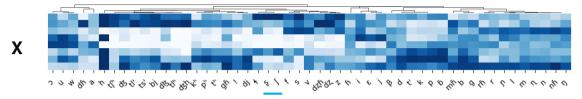

Large relative improvement (20-40x) over random demonstrates clear learning signal. Speaker embeddings and binary neurons improve clustering.

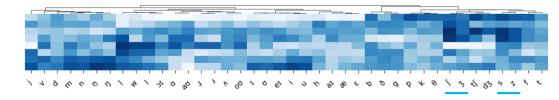
	Xitsonga			English		
Model	н	С	V	н	С	V
Baseline	0.023	0.013	0.016	0.006	0.004	0.005
-discrete,-speaker	0.281	0.191	0.227	0.246	0.166	0.198
-discrete,+speaker	0.302	0.185	0.230	0.205	0.180	0.192
+discrete,-speaker	0.360	0.206	0.262	0.240	0.161	0.193
Full model (+discrete,+speaker)	0.462	0.268	0.339	0.270	0.180	0.216


Large relative improvement (20-40x) over random demonstrates clear learning signal. Speaker embeddings and binary neurons improve clustering. Top-down guidance likely needed to refine representations.

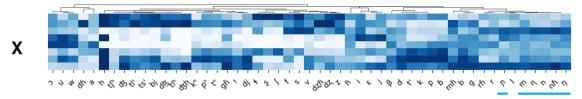


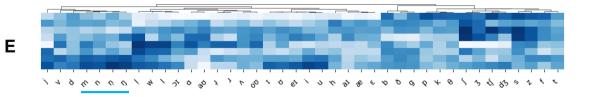



Clusters of:



Clusters of: Affricates




Clusters of: Sibilant Fricatives

Ε

Clusters of: Nasals

+ Decompose phonemes into phonological features (Hayes 2011; Hall et al. 2016)

- + Fit random forest classifiers: latent bits \rightarrow distinctive features
- Quantifies feature recoverability from logical statement on latent bits

- + Decompose phonemes into phonological features (Hayes 2011; Hall et al. 2016)
- + Fit random forest classifiers: latent bits \rightarrow distinctive features
- Quantifies feature recoverability from logical statement on latent bits

- + Decompose phonemes into phonological features (Hayes 2011; Hall et al. 2016)
- + Fit random forest classifiers: latent bits \rightarrow distinctive features
- + Quantifies feature recoverability from logical statement on latent bits

Feature	F-score	- Feature	F-score
voice	0.94	voice	0.89
sonorant	0.92	sonorant	0.87
continuant	0.86	approximant	0.82
consonantal	0.86	continuant	0.81
approximant	0.86	consonantal	0.78
syllabic	0.84		0.78
dorsal	0.83	syllabic	
strident	0.81	dorsal	0.71
low	0.80	strident	0.68
front	0.73	coronal	0.63
high	0.67	anterior	0.61
back	0.66	delayed release	0.55
round	0.66	front	0.55
labial	0.65	high	0.49
coronal	0.65	tense	0.45
tense	0.63	back	0.44
delayed release	0.62	nasal	0.41
anterior	0.55	labial	0.37
nasal	0.51	low	0.37
distributed	0.38	distributed	0.33
constricted glottis	0.29	stress	0.33
lateral	0.26	diphthong	0.33
labiodental	0.17	round	0.27
trill	0.15	lateral	0.25
spread glottis	0.12	labiodental	0.14
implosive	0.01	spread glottis	0.07

Feature	F-score		Feature	F-score
voice	0.94		voice	0.89
sonorant	0.92		sonorant	0.87
continuant	0.86		approximant	0.82
consonantal	0.86		continuant	0.81
approximant	0.86		consonantal	0.78
syllabic	0.84		syllabic	0.74
dorsal	0.83		dorsal	0.74
strident	0.81		strident	0.68
low	0.80	Example:		0.63
front	0.73	Example:	coronal anterior	0.61
high	0.67			0.55
back	0.66		delayed release	0.55
round	0.66	р	front	
labial	0.65	[-voice]	high	0.49 0.45
coronal	0.65	[-voice]	tense	
tense	0.63		back	0.44
delayed release	0.62		nasal	0.41
anterior	0.55	b	labial	0.37
nasal	0.51		low	0.37
distributed	0.38	[+voice]	distributed	0.33
constricted glottis	0.29		stress	0.33
lateral	0.26		diphthong	0.33
labiodental	0.17		round	0.27
trill	0.15		lateral	0.25
spread glottis	0.12		labiodental	0.14
implosive	0.01		spread glottis	0.07
mpleente				

Feature	F-score	-	Feature	F-score
voice	0.94		voice	0.89
sonorant	0.92		sonorant	0.87
continuant	0.86		approximant	0.82
consonantal	0.86		continuant	0.81
approximant	0.86		consonantal	0.78
syllabic	0.84		syllabic	0.74
dorsal	0.83		dorsal	0.71
strident	0.81		strident	0.68
low	0.80	Example:	coronal	0.63
front	0.73		anterior	0.61
high	0.67		delayed release	0.55
back	0.66		front	0.55
round	0.66	t	high	0.49
labial	0.65	[-sonorant]	tense	0.45
coronal	0.65	[-sonorant]	back	0.43
tense	0.63		nasal	0.44
delayed release	0.62		labial	0.37
anterior	0.55	а	low	0.37
nasal	0.51	[distributed	0.33
distributed	0.38	[+sonorant]	stress	0.33
constricted glottis	0.29		diphthong	0.33
lateral	0.26			
labiodental	0.17		round	0.27 0.25
trill	0.15		lateral	
spread glottis	0.12		labiodental	0.14
implosive	0.01		spread glottis	0.07

Feature	F-score	-	Feature	F-score
voice	0.94		voice	0.89
sonorant	0.92		sonorant	0.87
continuant	0.86		approximant	0.82
consonantal	0.86		continuant	0.81
approximant	0.86		consonantal	0.78
syllabic	0.84		syllabic	0.74
dorsal	0.83		dorsal	0.71
strident	0.81		strident	0.68
low	0.80	Example:	coronal	0.63
front	0.73		anterior	0.61
high	0.67		delayed release	0.55
back	0.66		front	0.55
round	0.66		high	0.49
labial	0.65	[-back]	tense	0.45
coronal	0.65	[-back]	back	0.43
tense	0.63		nasal	0.44
delayed release	0.62		labial	0.37
anterior	0.55	u	low	0.37
nasal	0.51	[.hook]	distributed	0.37
distributed	0.38	[+back]	stress	0.33
constricted glottis	0.29		diphthong	0.33
lateral	0.26			0.33
labiodental	0.17		round	0.27
trill	0.15		lateral	
spread glottis	0.12		labiodental	0.14
implosive	0.01		spread glottis	0.07

Feature	F-score	_	Feature	F-score
voice	0.94		voice	0.89
sonorant	0.92		sonorant	0.87
continuant	0.86		approximant	0.82
consonantal	0.86		continuant	0.81
approximant	0.86		consonantal	0.78
syllabic	0.84		syllabic	0.74
dorsal	0.83		dorsal	0.71
strident	0.81		strident	0.68
low	0.80	Example:	coronal	0.63
front	0.73		anterior	0.61
high	0.67		delayed release	0.55
back	0.66		front	0.55
round	0.66	g	high	0.49
labial	0.65	[-anterior]	tense	0.45
coronal	0.65	[-anterior]	back	0.44
tense	0.63		nasal	0.41
delayed release	0.62		labial	0.37
anterior	0.55	d	low	0.37
nasal	0.51	[+anterior]	distributed	0.33
distributed	0.38	[+antenor]	stress	0.33
constricted glottis	0.29		diphthong	0.33
lateral	0.26		round	0.27
labiodental	0.17		lateral	0.25
trill	0.15		labiodental	0.14
spread glottis	0.12		spread glottis	0.07
implosive	0.01		oprodu giottio	0.07

+ Percept modeling can support phonology learning

- Top-down constraints likely needed for adult-like performance
- + Asymmetries in model performance mimic those of human infants
- Graded feature recovery statistics suggest testable hypotheses about infant speech processing

- + Percept modeling can support phonology learning
- + Top-down constraints likely needed for adult-like performance
- + Asymmetries in model performance mimic those of human infants
- Graded feature recovery statistics suggest testable hypotheses about infant speech processing

- + Percept modeling can support phonology learning
- + Top-down constraints likely needed for adult-like performance
- + Asymmetries in model performance mimic those of human infants
- Graded feature recovery statistics suggest testable hypotheses about infant speech processing

- + Percept modeling can support phonology learning
- + Top-down constraints likely needed for adult-like performance
- + Asymmetries in model performance mimic those of human infants
- Graded feature recovery statistics suggest testable hypotheses about infant speech processing

Thank you!

Code:

https://github.com/coryshain/dnnseg

Acknowledgements:

National Science Foundation grant #1422987 Anonymous NAACL 2019 reviewers

References

Antetomaso, Stephanie et al. (2017). "Modeling phonetic category learning from natural acoustic data". In:

Proceedings of the annual Boston University Conference on Language Development.

- Baddeley, Alan, Susan Gathercole, and Costanza Papagno (1998). "The Phonological Loop as a Language Learning Device". In: <u>Psychological Review</u> 105.1, pp. 158–173.
- Baddeley, Alan D and Graham Hitch (1974). Working Memory. Stirling, Scotland: University of Stirling.
- Elsner, Micha and Cory Shain (2017). "Speech segmentation with a neural encoder model of working memory". In:

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 1070–1080.

- Feldman, Naomi H et al. (2013). "A role for the developing lexicon in phonetic category acquisition.". In: <u>Psychological review</u> 120.4, p. 751.
- Hall, Kathleen Currie et al. (2016). "Phonological CorpusTools: A free, open-source tool for phonological analysis". In: <u>14th Conference for Laboratory Phonology</u>. Vol. 543.

References

Hayes, Bruce (2011). <u>Introductory phonology</u>. Vol. 32. Hoboken: John Wiley \& Sons.
Lee, Chia-ying and James Glass (2012). "A Nonparametric {Bayesian} Approach to Acoustic Model Discovery". In:
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics,

pp. 40-49.

- Peperkamp, Sharon et al. (2006). "The acquisition of allophonic rules: Statistical learning with linguistic constraints". In: <u>Cognition</u> 101.3, B31–B41.
- Rosenberg, Andrew and Julia Hirschberg (2007). "V-measure: A conditional entropy-based external cluster evaluation measure". In:

Proceedings of the 2007 joint conference on empirical methods in natural language processing

Swingley, Daniel (2009). "Contributions of infant word learning to language development". In: <u>Philosophical Transactions of the Royal Society of London B: Biological Sciences</u> 364.1536, pp. 3617–3632.

- Vallabha, Gautam K et al. (2007). "Unsupervised learning of vowel categories from infant-directed speech". In: Proceedings of the National Academy of Sciences 104.33, pp. 13273–13278.
- Versteegh, Maarten et al. (2015). "The zero resource speech challenge 2015". In: Sixteenth Annual Conference of the International Speech Communication Association.