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Question

How do young infants learn the phoneme categories
and phonological features of their target language?
In particular:

• Q1: To what extent can phoneme categories
emerge from a drive to memorize auditory
percepts?

• Q2: How perceptually available are
theory-driven phonological features?

Background

• Acoustics must contain evidence for phoneme
categories

• Language comprehension and production might be
linked through a sensorimotor loop [6]

• Limited auditory memory requires compression,
which may guide learning [1]

• Featural decomposition occurs in acquisition [7]
• Phone perception tends to be categorical, even in

infants [4]
• We implement these biases in a computational

model and evaluate its acquired representations
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BSN autoencoder architecture with encoder layers E1,...,e and
decoder layers D1,...,d.

Experimental Design

• Data:
• Zerospeech 2015 challenge datasets [12]

• English [11]
• Xitsonga [2]

• Model:
• Deep neural autoencoder (percept modeling,

autoassociation, sensorimotor loop)
• 8-dimensional bottleneck (compression)
• Discrete binary stochastic neurons (BSNs) (feature

decomposition, categorical perception)
• Inputs/outputs: MFCC acoustic features from

pre-segmented phonemes
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Highlights

• Relative clustering improvement over random
shows percept modeling provides learning signal

• Asymmetries in feature recovery show some
features are more reliably encoded than others

• Similar feature recovery patterns between
languages suggests that results reflect general
perceptual availability

• Differences between languages may reflect
perceptual crowding:
• Different relative performance on a cluster of vowel and

consonant features:
• Xitsonga: vowel > consonant; relatively fewer vowel

categories
• English: consonant > vowel; relatively fewer

consonant categories
• Aligns with infant phone discrimination patterns:

• Best recovery of voicing [8] and features that
distinguish vowel-like from consonant-like
segments, distinctions made early by infants [3]

• Poorer recovery of e.g. nasal and fricative place
distinctions (see clustermaps), as has been shown for
infants [10, 9]

Model H C V

Random Baseline 0.023 0.013 0.016

BSN Autoencoder 0.462 0.268 0.33
Xitsonga clustering (2118% relative V-measure improvement)

Model H C V

Random Baseline 0.006 0.004 0.005

BSN Autoencoder 0.270 0.180 0.216
English clustering (4500% relative V-measure improvement)

Feature P R F
voice 0.9767 0.9033 0.9386

sonorant 0.9249 0.9085 0.9166
continuant 0.9492 0.7936 0.8645

consonantal 0.8314 0.8915 0.8604
approximant 0.8998 0.8192 0.8576

syllabic 0.8278 0.8523 0.8398
dorsal 0.8935 0.7703 0.8273

strident 0.6991 0.9594 0.8089
low 0.7175 0.8978 0.7976

front 0.6590 0.8101 0.7268
high 0.5875 0.7882 0.6732
back 0.5352 0.8527 0.6577

round 0.5332 0.8551 0.6568
labial 0.5669 0.7725 0.6539

coronal 0.5382 0.8301 0.6530
tense 0.5208 0.8115 0.6344

delayed release 0.5468 0.7226 0.6225
anterior 0.4078 0.8355 0.5481

nasal 0.3635 0.8796 0.5144
distributed 0.2459 0.8537 0.3819

constricted glottis 0.1762 0.9007 0.2948
lateral 0.1536 0.8062 0.2581

labiodental 0.0934 0.7980 0.1672
trill 0.0809 0.7401 0.1458

spread glottis 0.0671 0.5856 0.1204
implosive 0.0041 0.4041 0.0081

Xitsonga feature recovery

Feature P R F
voice 0.9244 0.8567 0.8893

sonorant 0.8544 0.8862 0.8700
approximant 0.8005 0.8370 0.8183

continuant 0.8577 0.7669 0.8098
consonantal 0.8249 0.7357 0.7777

syllabic 0.6624 0.8426 0.7417
dorsal 0.7046 0.7114 0.7080

strident 0.5505 0.9027 0.6839
coronal 0.5758 0.7066 0.6345
anterior 0.5251 0.7280 0.6101

delayed release 0.4413 0.7374 0.5521
front 0.4322 0.7407 0.5459
high 0.3841 0.6931 0.4943

tense 0.3275 0.7101 0.4483
back 0.3128 0.7504 0.4416
nasal 0.2796 0.7544 0.4080
labial 0.2541 0.7077 0.3739

low 0.2410 0.7787 0.3680
distributed 0.2203 0.6881 0.3337

stress 0.2052 0.8027 0.3269
diphthong 0.2039 0.8051 0.3254

round 0.1665 0.7012 0.2692
lateral 0.1484 0.8333 0.2519

labiodental 0.0787 0.6756 0.1410
spread glottis 0.0377 0.6683 0.0714

English feature recovery

Conclusion

Much phonological structure is perceptually available, but some may not be.
• Based solely on a perceptual modeling objective, our learner partially acquires phoneme categories (Q1) and

theory-driven features (Q2), unsupervised. Evidence for such features is therefore perceptually available.
• Error patterns mimic those of human infants
• Top-down constraints are likely needed in order to refine representations, as has been argued for humans [5]
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