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+ Syntactic analysis is a core subroutine in typical language processing
(cf. Swets et al. 2008; Frank and Bod 2011)
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Memory and Prediction in Sentence Processing
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+ Can differentiate:
+ Processing strategies

(Grodner and Gibson 2005; Lewis and Vasishth 2005; Hale 2001; Levy 2008)

+ Representations
(Brennan et al. 2016; Lopopolo et al. 2020)

+ Both functions are domain general
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The Naturalistic Paradigm

+ These studies: Natural Stories corpus, audio, 78 fMRI participants
(Futrell et al. 2018)

+ Naturalistic stimuli mitigate observer’s paradox
(Hasson and Honey 2012)

+ Constructed manipulations may engage other processing strategies
(Campbell and Tyler 2018; Hasson et al. 2018; Diachek et al. 2019)

+ Effects have failed to generalize to naturalistic stim
E.g. Grodner and Gibson 2005 vs. van Schijndel and Schuler 2013
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How to investigate?

Shared resources? → imaging
Observer’s paradox → naturalistic stimuli

Variable functional anatomy → functional localization
Variable hemodynamics → deconvolutional regression
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How specialized is predictive language processing?

+ Prior studies report prediction effects mostly in language (LANG) regions
(Willems et al. 2015; Brennan et al. 2016; Henderson et al. 2016; Lopopolo et al. 2017)

+ Didn’t localize MD to control for variation in functional brain anatomy
(Poldrack 2006; Fedorenko et al. 2010; Frost and Goebel 2012)
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Results: Prediction
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Q2: Does word prediction recruit domain-general resources?
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predictive coding during naturalistic sentence comprehension. Neuropsychologia. 138.
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Epilogue:
Naturalistic Language Processing in Reading Times vs. Imaging
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Strong syntactic effects in brains when listening to naturalistic stimuli
this study

Possible implication:
Some computational demands may not cause readers to slow down



Puzzle:

Strong syntactic effects when reading constructed stimuli
(e.g. Grodner and Gibson 2005)

Weak/null syntactic effects when reading naturalistic stimuli
(e.g. Demberg and Keller 2008; Frank and Bod 2011; Schijndel and Schuler 2013)

Strong syntactic effects in brains when listening to naturalistic stimuli
this study

Possible implication:
Some computational demands may not cause readers to slow down



Puzzle:

Strong syntactic effects when reading constructed stimuli
(e.g. Grodner and Gibson 2005)

Weak/null syntactic effects when reading naturalistic stimuli
(e.g. Demberg and Keller 2008; Frank and Bod 2011; Schijndel and Schuler 2013)

Strong syntactic effects in brains when listening to naturalistic stimuli
this study

Possible implication:
Some computational demands may not cause readers to slow down



Puzzle:

Strong syntactic effects when reading constructed stimuli
(e.g. Grodner and Gibson 2005)

Weak/null syntactic effects when reading naturalistic stimuli
(e.g. Demberg and Keller 2008; Frank and Bod 2011; Schijndel and Schuler 2013)

Strong syntactic effects in brains when listening to naturalistic stimuli
this study

Possible implication:
Some computational demands may not cause readers to slow down



Puzzle:

Strong syntactic effects when reading constructed stimuli
(e.g. Grodner and Gibson 2005)

Weak/null syntactic effects when reading naturalistic stimuli
(e.g. Demberg and Keller 2008; Frank and Bod 2011; Schijndel and Schuler 2013)

Strong syntactic effects in brains when listening to naturalistic stimuli
this study

Possible implication:
Some computational demands may not cause readers to slow down



References

Brennan, Jonathan et al. (2016). “Abstract linguistic structure correlates with temporal activity
during naturalistic comprehension”. In: Brain and Language 157, pp. 81–94.

Campbell, Karen L and Lorraine K Tyler (2018). “Language-related domain-specific and
domain-general systems in the human brain”. In: Current opinion in behavioral sciences 21,
pp. 132–137.

Caplan, David and Gloria S Waters (1999). “Verbal working memory and sentence
comprehension”. In: Behavioral and Brain Sciences 22.1, pp. 77–94.

Demberg, Vera and Frank Keller (2008). “Data from eye-tracking corpora as evidence for
theories of syntactic processing complexity”. In: Cognition 109.2, pp. 193–210.

Diachek, Evgeniia et al. (2019). “The domain-general multiple demand (MD) network does not
support core aspects of language comprehension: A large-scale fMRI investigation”. In:

Duncan, John (2010). “The multiple-demand (MD) system of the primate brain: Mental
programs for intelligent behaviour”. In: Trends in Cognitive Sciences 14.4, pp. 172–179.



References

Federmeier, Kara D, Suzanne R Jongman, and Jakub M Szewczyk (2020). “Examining the
Role of General Cognitive Skills in Language Processing: A Window Into Complex
Cognition”. In: Current Directions in Psychological Science, p. 0963721420964095.

Federmeier, Kara D et al. (2002). “The impact of semantic memory organization and sentence
context information on spoken language processing by younger and older adults: An ERP
study”. In: Psychophysiology 39.2, pp. 133–146.

Fedorenko, Evelina and Idan A Blank (2020). “Broca’s Area Is Not a Natural Kind”. In:
Trends in Cognitive Sciences.

Fedorenko, Evelina, Edward Gibson, and Douglas Rohde (2006). “The nature of working
memory capacity in sentence comprehension: Evidence against domain-specific working
memory resources”. In: Journal of memory and language 54.4, pp. 541–553.

Fedorenko, Evelina et al. (2010). “New method for fMRI investigations of language: defining
ROIs functionally in individual subjects”. In: Journal of neurophysiology 104.2,
pp. 1177–1194.



References

Ferreira, Fernanda and Suphasiree Chantavarin (2018). “Integration and prediction in
language processing: A synthesis of old and new”. In:
Current directions in psychological science 27.6, pp. 443–448.

Fiebach, Christian J, Matthias Schlesewsky, and Angela D Friederici (2001). “Syntactic
working memory and the establishment of filler-gap dependencies: Insights from ERPs and
fMRI”. In: Journal of psycholinguistic research 30.3, pp. 321–338.

Frank, Stefan L and Rens Bod (June 2011). “Insensitivity of the Human Sentence-Processing
System to Hierarchical Structure”. In: Psychological Science 22.6, pp. 829–834. issn:
0956-7976. doi: 10.1177/0956797611409589. url:
http://www.ncbi.nlm.nih.gov/pubmed/21586764http:

//journals.sagepub.com/doi/10.1177/0956797611409589.
Friedrich, Roland and Angela D Friederici (2009). “Mathematical logic in the human brain:

syntax”. In: PloS one 4.5.

https://doi.org/10.1177/0956797611409589
http://www.ncbi.nlm.nih.gov/pubmed/21586764 http://journals.sagepub.com/doi/10.1177/0956797611409589
http://www.ncbi.nlm.nih.gov/pubmed/21586764 http://journals.sagepub.com/doi/10.1177/0956797611409589


References

Frost, Martin A and Rainer Goebel (2012). “Measuring structural–functional correspondence:
spatial variability of specialised brain regions after macro-anatomical alignment”. In:
Neuroimage 59.2, pp. 1369–1381.

Futrell, Richard et al. (May 2018). “The Natural Stories Corpus”. In:
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018).
Ed. by Nicoletta Calzolari et al. Paris, France: European Language Resources Association
(ELRA). isbn: 979-10-95546-00-9.

Gambi, Chiara et al. (2018). “The development of linguistic prediction: Predictions of sound
and meaning in 2- to 5-year-olds”. In: Journal of Experimental Child Psychology 173,
pp. 351–370. issn: 0022-0965. doi: https://doi.org/10.1016/j.jecp.2018.04.012. url:
http://www.sciencedirect.com/science/article/pii/S0022096517307531.

Gibson, Edward (2000). “The dependency locality theory: A distance-based theory of linguistic
complexity”. In:
Image, language, brain: Papers from the first mind articulation project symposium.
Cambridge, MA: MIT {P}ress, pp. 95–126.

https://doi.org/https://doi.org/10.1016/j.jecp.2018.04.012
http://www.sciencedirect.com/science/article/pii/S0022096517307531


References

Grodner, Daniel J and Edward Gibson (2005). “Consequences of the serial nature of linguistic
input”. In: Cognitive Science 29, pp. 261–291.

Hale, John (2001). “A probabilistic Earley parser as a psycholinguistic model”. In:
Proceedings of the Second Meeting of the North American Chapter of the Association for Computational Linguistics on Language Technologies,
pp. 1–8. doi: 10.3115/1073336.1073357. url: http://www.aclweb.org/anthology/N01-
1021http://portal.acm.org/citation.cfm?doid=1073336.1073357.

Handwerker, Daniel A, John M Ollinger, and Mark D’Esposito (2004). “Variation of BOLD
hemodynamic responses across subjects and brain regions and their effects on statistical
analyses.”. In: NeuroImage 21.4, pp. 1639–1651. url:
http://www.ncbi.nlm.nih.gov/pubmed/15050587.

Hasson, Uri and Christopher J Honey (2012). “Future trends in Neuroimaging: Neural
processes as expressed within real-life contexts”. In: NeuroImage 62.2, pp. 1272–1278.

Hasson, Uri et al. (2018). “Grounding the neurobiology of language in first principles: The
necessity of non-language-centric explanations for language comprehension”. In: Cognition
180, pp. 135–157.

https://doi.org/10.3115/1073336.1073357
http://www.aclweb.org/anthology/N01-1021 http://portal.acm.org/citation.cfm?doid=1073336.1073357
http://www.aclweb.org/anthology/N01-1021 http://portal.acm.org/citation.cfm?doid=1073336.1073357
http://www.ncbi.nlm.nih.gov/pubmed/15050587


References

Henderson, John M et al. (2016). “Language structure in the brain: A fixation-related fMRI
study of syntactic surprisal in reading”. In: Neuroimage 132, pp. 293–300.

Huettig, Falk and Nivedita Mani (2016). “Is prediction necessary to understand language?
Probably not”. In: Language, Cognition and Neuroscience 31.1, pp. 19–31.

January, David, John C Trueswell, and Sharon L Thompson-Schill (2009). “Co-localization of
Stroop and syntactic ambiguity resolution in Broca’s area: Implications for the neural basis
of sentence processing”. In: Journal of Cognitive Neuroscience 21.12, pp. 2434–2444.

Kuperberg, Gina R and T Florian Jaeger (2016). “What do we mean by prediction in language
comprehension?” In: Language, cognition and neuroscience 31.1, pp. 32–59.

Kuperberg, Gina R et al. (2003). “Distinct patterns of neural modulation during the processing
of conceptual and syntactic anomalies”. In: Journal of Cognitive Neuroscience 15.2,
pp. 272–293.

Levy, Roger (2008). “Expectation-based syntactic comprehension”. In: Cognition 106.3,
pp. 1126–1177.



References

Lewis, Richard L and Shravan Vasishth (2005). “An activation-based model of sentence
processing as skilled memory retrieval”. In: Cognitive Science 29.3, pp. 375–419.

Linck, Jared A et al. (2014). “Working memory and second language comprehension and
production: A meta-analysis”. In: Psychonomic bulletin \& review 21.4, pp. 861–883.

Lopopolo, Alessandro et al. (2017). “Using stochastic language models (SLM) to map lexical,
syntactic, and phonological information processing in the brain”. In: PloS one 12.5,
e0177794.

Lopopolo, Alessandro et al. (2020). “Distinguishing syntactic operations in the brain:
Dependency and phrase-structure parsing”. In: Neurobiology of Language Just Accepted,
pp. 1–64.

Mani, Nivedita and Falk Huettig (2012). “Prediction during language processing is a piece of
cake—But only for skilled producers.”. In:
Journal of Experimental Psychology: Human Perception and Performance 38.4, p. 843.



References

Novick, Jared M, John C Trueswell, and Sharon L Thompson-Schill (2005). “Cognitive control
and parsing: Reexamining the role of Broca’s area in sentence comprehension”. In:
Cognitive, Affective, \& Behavioral Neuroscience 5.3, pp. 263–281.

Patel, Aniruddh D (2003). “Language, music, syntax and the brain”. In: Nature Neuroscience
6.7, pp. 674–681.

Pickering, Martin J and Chiara Gambi (2018). “Predicting while comprehending language: A
theory and review.”. In: Psychological bulletin 144.10, p. 1002.

Poldrack, Russell A (2006). “Can cognitive processes be inferred from neuroimaging data?” In:
Trends in cognitive sciences 10.2, pp. 59–63.

Rasmussen, Nathan E and William Schuler (2018). “Left-Corner Parsing With Distributed
Associative Memory Produces Surprisal and Locality Effects”. In: Cognitive Science 42,
pp. 1009–1042.

Schijndel, Marten van and William Schuler (2013). “An Analysis of Frequency- and
Memory-Based Processing Costs”. In:
Proceedings of Human Language Technologies: The 2013 Annual Conference of the North American Chapter of the ACL.



References

Shain, Cory and William Schuler (2018). “Deconvolutional time series regression: A technique
for modeling temporally diffuse effects”. In:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 2679–2689.

– (2019). “Continuous-Time Deconvolutional Regression for Psycholinguistic Modeling”. In:
PsyArXiv.

Smith, Nathaniel J and Roger Levy (2013). “The effect of word predictability on reading time is
logarithmic”. In: Cognition 128, pp. 302–319.

Stowe, Laurie A et al. (1998). “Localizing components of a complex task: Sentence processing
and working memory”. In: Neuroreport 9.13, pp. 2995–2999.

Strijkers, Kristof et al. (2019). “Grammatical class modulates the (left) inferior frontal gyrus
within 100 milliseconds when syntactic context is predictive”. In: Scientific reports 9.1,
p. 4830.

Swets, Benjamin et al. (2008). “Underspecification of syntactic ambiguities: Evidence from
self-paced reading”. In: Memory and Cognition 36.1, pp. 201–216.



References

Tettamanti, Marco and Dorothea Weniger (2006). “Broca’s area: A supramodal hierarchical
processor?” In: Cortex 42.4, pp. 491–494.

van Schijndel, Marten and Tal Linzen (2018). “A Neural Model of Adaptation in Reading”. In:
EMNLP 2018, pp. 4704–4710.

van Schijndel, Marten and William Schuler (2013). “An Analysis of Frequency- and
Memory-Based Processing Costs”. In:
Proceedings of Human Language Technologies: The 2013 Annual Conference of the North American Chapter of the ACL.
Association for Computational Linguistics.

Willems, Roel M et al. (2015). “Prediction during natural language comprehension”. In:
Cerebral Cortex 26.6, pp. 2506–2516.



Prediction and MD

+ Linguistic prediction may be carried out by domain-general executive control
(Linck et al. 2014; Huettig and Mani 2016; Pickering and Gambi 2018; Strijkers et al. 2019)

+ Hierarchic sequential prediction is a domain-general skill
(vanschijndeletal13:tcs2; Smith and Levy 2013; Rasmussen and Schuler 2018)

+ Variation in executive function modulates prediction effects
(Federmeier et al. 2002; Mani and Huettig 2012; Gambi et al. 2018)

+ Domain-general executive regions engage during some language tasks
(Kuperberg et al. 2003; Novick et al. 2005; January et al. 2009, cf. Diachek et al. 2019)

+ Broca’s may be universal syntactic processor
(Patel 2003; Tettamanti and Weniger 2006; Friedrich and Friederici 2009, cf. Fedorenko and Blank 2020)

+ Plausible executive resource: fronto-parietal multiple demand (MD) network
(Duncan 2010)

+ Hypothesis 2: Linguistic prediction recruits MD
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