Prediction and memory in human language comprehension: Evidence from naturalistic fMRI

Cory Shain (with Idan Blank, Marten van Schijndel, Evelina Fedorenko, Edward Gibson, and William Schuler)

Dec 7, 2020, Centre for Language Studies, Radboud University

+ Prediction \subset comprehension

(cf. Levy 2008)

- + There are dedicated working memory and predictive coding resources for language (cf. Fedorenko et al. 2006; Huettig and Mani 2016)
- + Syntactic analysis is a core subroutine in typical language processing (cf. Swets et al. 2008; Frank and Bod 2011)
- + Some costs don't register in reading

$+ \ \ \text{Prediction} \subset \text{comprehension}$

(cf. Levy 2008)

- + There are dedicated working memory and predictive coding resources for language (cf. Fedorenko et al. 2006; Huettig and Mani 2016)
- Syntactic analysis is a core subroutine in typical language processing (cf. Swets et al. 2008; Frank and Bod 2011)
- + Some costs don't register in reading

 $+ \ \ \text{Prediction} \subset \text{comprehension}$

(cf. Levy 2008)

- + There are dedicated working memory and predictive coding resources for language (cf. Fedorenko et al. 2006; Huettig and Mani 2016)
- + Syntactic analysis is a core subroutine in typical language processing (cf. Swets et al. 2008; Frank and Bod 2011)

+ Some costs don't register in reading

 $+ \ \ \text{Prediction} \subset \text{comprehension}$

(cf. Levy 2008)

- + There are dedicated working memory and predictive coding resources for language (cf. Fedorenko et al. 2006; Huettig and Mani 2016)
- + Syntactic analysis is a core subroutine in typical language processing (cf. Swets et al. 2008; Frank and Bod 2011)
- + Some costs don't register in reading

(Grodner and Gibson 2005; Levy 2008; Kuperberg and Jaeger 2016; Ferreira and Chantavarin 2018)

+ Can differentiate:

- Processing strategies
 - (Grodner and Gibson 2005; Lewis and Vasishth 2005; Hale 2001; Levy 2008)
 - Representations
- + Both functions are domain general (Federmeler et al. 2020)

(Grodner and Gibson 2005; Levy 2008; Kuperberg and Jaeger 2016; Ferreira and Chantavarin 2018)

+ Can differentiate:

+ Processing strategies

(Grodner and Gibson 2005; Lewis and Vasishth 2005; Hale 2001; Levy 2008)

+ Representations

(Brennan et al. 2016; Lopopolo et al. 2020)

+ Both functions are domain general (Federmeier et al. 2020)

(Grodner and Gibson 2005; Levy 2008; Kuperberg and Jaeger 2016; Ferreira and Chantavarin 2018)

- + Can differentiate:
 - + Processing strategies

(Grodner and Gibson 2005; Lewis and Vasishth 2005; Hale 2001; Levy 2008)

+ Representations

(Brennan et al. 2016; Lopopolo et al. 2020)

+ Both functions are domain general

(Grodner and Gibson 2005; Levy 2008; Kuperberg and Jaeger 2016; Ferreira and Chantavarin 2018)

- + Can differentiate:
 - + Processing strategies

(Grodner and Gibson 2005; Lewis and Vasishth 2005; Hale 2001; Levy 2008)

+ Representations

(Brennan et al. 2016; Lopopolo et al. 2020)

+ Both functions are domain general

(Federmeier et al. 2020)

(Grodner and Gibson 2005; Levy 2008; Kuperberg and Jaeger 2016; Ferreira and Chantavarin 2018)

+ Can differentiate:

+ Processing strategies

(Grodner and Gibson 2005; Lewis and Vasishth 2005; Hale 2001; Levy 2008)

+ Representations

(Brennan et al. 2016; Lopopolo et al. 2020)

+ Both functions are domain general

(Federmeier et al. 2020)

Shared resources? \rightarrow imaging

- Shared resources? \rightarrow imaging
- Observer's paradox \rightarrow naturalistic stimuli

+ **These studies:** Natural Stories corpus, audio, 78 fMRI participants (Futrell et al. 2018)

Naturalistic stimuli mitigate observer's paradox (Hasson and Honey 2012)

- 4- Constructed manipulations may engage other processing strategies (Geometry and Tyler 2018) Hencen et al. 2018; Discher et al. 2018.
- Effects have failed to generalize to naturalistic stim.

- + **These studies:** Natural Stories corpus, audio, 78 fMRI participants (Futrell et al. 2018)
- + Naturalistic stimuli mitigate observer's paradox (Hasson and Honey 2012)
 - + Constructed manipulations may engage other processing strategies (Campbell and Tyler 2018; Hasson et al. 2018; Diachek et al. 2019)
 - Effects have failed to generalize to naturalistic stim
 E.g. Grodner and Gibson 2005 vs. van Schijndel and Schuler 2013

- + **These studies:** Natural Stories corpus, audio, 78 fMRI participants (Futrell et al. 2018)
- + Naturalistic stimuli mitigate observer's paradox (Hasson and Honey 2012)
 - + Constructed manipulations may engage other processing strategies (Campbell and Tyler 2018; Hasson et al. 2018; Diachek et al. 2019)
 - Effects have failed to generalize to naturalistic stim
 E.g. Grodner and Gibson 2005 vs. van Schijndel and Schuler 2013

- + **These studies:** Natural Stories corpus, audio, 78 fMRI participants (Futrell et al. 2018)
- + Naturalistic stimuli mitigate observer's paradox (Hasson and Honey 2012)
 - + Constructed manipulations may engage other processing strategies (Campbell and Tyler 2018; Hasson et al. 2018; Diachek et al. 2019)
 - + Effects have failed to generalize to naturalistic stim

E.g. Grodner and Gibson 2005 vs. van Schijndel and Schuler 2013

- Shared resources? \rightarrow imaging
- Observer's paradox \rightarrow naturalistic stimuli

- Shared resources? \rightarrow imaging
- Observer's paradox → naturalistic stimuli

Variable functional anatomy \rightarrow functional localization

+ Two coherent functional networks:

- Fronto-temporal language network (LANG) (Fedorenko et al. 2010)
- Fronto-parietal multiple-demand network (MD) (Duncan 2010)

+ Two coherent functional networks:

+ Fronto-temporal language network (LANG) (Fedorenko et al. 2010)

 Fronto-parietal multiple-demand network (MD) (Duncan 2010) + Two coherent functional networks:

- + Fronto-temporal language network (LANG) (Fedorenko et al. 2010)
- + Fronto-parietal multiple-demand network (MD) (Duncan 2010)

A RUSTY LOCK WAS FOUND IN THE DRAWER

A RUSTY LOCK WAS FOUND IN THE DRAWER DAP DRELLO SMOP UB PLID KAV CRE REPLODE

- Shared resources? \rightarrow imaging
- Observer's paradox → naturalistic stimuli

Variable functional anatomy \rightarrow functional localization

- Shared resources? \rightarrow imaging

Variable functional anatomy \rightarrow functional localization

- Observer's paradox → naturalistic stimuli
- Variable hemodynamics \rightarrow deconvolutional regression

Varies by individual/region

(Handwerker et al. 2004)

Varies by individual/region

(Handwerker et al. 2004)

Estimate HRF using continuous-time deconvolutional regression (CDR)

(Shain and Schuler 2018; Shain and Schuler 2019)

Prediction

Q2: Does word prediction recruit domain-general resources?

 + Prior studies report prediction effects mostly in language (LANG) regions (Willems et al. 2015; Brennan et al. 2016; Henderson et al. 2016; Lopopolo et al. 2017)
+ Didn't localize MD to control for variation in functional brain anatomy (Poldrack 2006; Fedorenko et al. 2010; Frost and Goebel 2012)

- + Prior studies report prediction effects mostly in language (LANG) regions (Willems et al. 2015; Brennan et al. 2016; Henderson et al. 2016; Lopopolo et al. 2017)
- + Didn't localize MD to control for variation in functional brain anatomy (Poldrack 2006; Fedorenko et al. 2010; Frost and Goebel 2012)

+ Critical variables:

- 5-gram surprisa
- + PCFG surprisal

- + Critical variables:
 - + 5-gram surprisal
 - + PCFG surprisal

- + Critical variables:
 - + 5-gram surprisal
 - + PCFG surprisal

Results: Prediction

LANG network

MD network

LH Angular gyrus

LH Anterior temporal lobe

LH Inferior frontal gyrus

LH Inferior frontal gyrus (orbital)

LH Middle frontal gyrus

LH Posterior temporal lobe

OOS hypothesis tests: LANG

Baseline model (both effects ablated)

OOS hypothesis tests: LANG

OOS hypothesis tests: MD

Baseline model (both effects ablated)

OOS hypothesis tests: MD

Q2: Does word prediction recruit domain-general resources?

Q2: Does word prediction recruit domain-general resources? No

Q2: Does word prediction recruit domain-general resources? No

Shain, Blank, van Schijndel, Schuler, Fedorenko (2020). fMRI reveals language-specific predictive coding during naturalistic sentence comprehension. *Neuropsychologia*. 138.

Memory

The reporter who the senator attacked disliked the editor.

The reporter who the senator attacked disliked the editor.

Q3: Does language comprehension involve memory retrieval? (Gibson 2000; Lewis and Vasishth 2005)

The reporter who the senator attacked disliked the editor.

Q3: Does language comprehension involve memory retrieval? (Gibson 2000; Lewis and Vasishth 2005)

Q4: Are memory stores are domain-general?

(Stowe et al. 1998; Fedorenko et al. 2006)

+ Retrieval effects should happen all the time

 + Retrieval effort ≠ prediction effort (cf. e.g. Levy 2008)

- + Retrieval effects should happen all the time
- + Retrieval effort ≠ prediction effort (cf. e.g. Levy 2008)

(Grodner and Gibson 2005)

- + Constructed/artificial stimuli
- + Little/no control for predictability
- Memory effects null/neg using naturalistic stimuli with predictability controls (Demberg and Keller 2008; van Schijndel and Schuler 2013)

(Grodner and Gibson 2005)

- + Constructed/artificial stimuli
- Little/no control for predictability

 Memory effects null/neg using naturalistic stimuli with predictability controls (Demberg and Keller 2008; van Schijndel and Schuler 2013)

(Grodner and Gibson 2005)

- + Constructed/artificial stimuli
- + Little/no control for predictability

+ Memory effects null/neg using **naturalistic stimuli** with **predictability controls** (Demberg and Keller 2008; van Schijndel and Schuler 2013)

(Grodner and Gibson 2005)

- + Constructed/artificial stimuli
- + Little/no control for predictability

+ Memory effects null/neg using naturalistic stimuli with predictability controls

(Demberg and Keller 2008; van Schijndel and Schuler 2013)

+ Yes
(Caplan and Waters 1999; Fiebach et al. 2001)
+ No
(Stowe et al. 1998; Fedorenko et al. 2006)

+ Yes
(Caplan and Waters 1999; Fiebach et al. 2001)
+ No
(Stowe et al. 1998; Fedorenko et al. 2006)

Yes (Caplan and Waters 1999; Fiebach et al. 2001)
No

(Stowe et al. 1998; Fedorenko et al. 2006)

+ If **no**, should be memory effects in MD

Yes

 (Caplan and Waters 1999; Fiebach et al. 2001)
 No

(Stowe et al. 1998; Fedorenko et al. 2006)

+ If **no**, should be memory effects in MD

+ Critical variable:

- + Dependency locality theory integration cost (DLT)
- + Predictability controls:
 - 5-gram surprisal 2013G surprisal
 - Adaptive RNN surprise
 - (van Schijndel and Linzen 2018)

+ Critical variable:

+ Dependency locality theory integration cost (DLT)

+ Predictability controls

- 5-gram surprisal
 PCEG surprisal
- Adaptive RNN surprisa
 - (van Schijndel and Linzen 2018)

+ Critical variable:

+ Dependency locality theory integration cost (DLT)

+ Predictability controls:

- + 5-gram surprisal
- + PCFG surprisal
- + Adaptive RNN surprisal

(van Schijndel and Linzen 2018)

- + Critical variable:
 - + Dependency locality theory integration cost (DLT)
- + Predictability controls:
 - + 5-gram surprisal
 - + PCFG surprisal
 - + Adaptive RNN surprisal
 - (van Schijndel and Linzen 2018)

- + Critical variable:
 - + Dependency locality theory integration cost (DLT)
- + Predictability controls:
 - + 5-gram surprisal
 - + PCFG surprisal
 - + Adaptive RNN surprisal

(van Schijndel and Linzen 2018

- + Critical variable:
 - + Dependency locality theory integration cost (DLT)
- + Predictability controls:
 - + 5-gram surprisal
 - + PCFG surprisal
 - + Adaptive RNN surprisal

(van Schijndel and Linzen 2018)

Results: Memory

Large DLT effect in LANG, null/neg in MD

Large DLT effect in LANG, null/neg in MD

DLT significantly improves generalization in LANG but not MD

Q3: Does language comprehension involve memory retrieval? Yes

Q3: Does language comprehension involve memory retrieval? Yes

Q4: Are memory stores are domain-general? No

+ Comprehenders represent and use syntax by default

- Retrieval effects are not explained by prediction
- + Language processing is:
 - Mostly alloed off from domain-general regions
 Distributed across language-specialized regions

- Comprehenders represent and use syntax by default
 Retrieval effects are not explained by prediction
 - + Language processing is:
 - Hostly sliced off from domain-general regions
 Distributed across language-specialized regions

- + Comprehenders represent and use syntax by default
- + Retrieval effects are not explained by prediction
- + Language processing is:
 - + Mostly siloed off from domain-general regions
 - + Distributed across language-specialized regions

- + Comprehenders represent and use syntax by default
- + Retrieval effects are not explained by prediction
- + Language processing is:
 - + Mostly siloed off from domain-general regions
 - + Distributed across language-specialized regions

- + Comprehenders represent and use syntax by default
- + Retrieval effects are not explained by prediction
- + Language processing is:
 - + Mostly siloed off from domain-general regions
 - + Distributed across language-specialized regions
Epilogue: Naturalistic Language Processing in Reading Times vs. Imaging

(Futrell et al. 2018)

Strong syntactic effects when reading constructed stimuli

(e.g. Grodner and Gibson 2005)

Strong syntactic effects when reading constructed stimuli (e.g. Grodner and Gibson 2005)

Weak/null syntactic effects when reading naturalistic stimuli (e.g. Demberg and Keller 2008; Frank and Bod 2011; Schijndel and Schuler 2013)

Strong syntactic effects when reading constructed stimuli (e.g. Grodner and Gibson 2005)

Weak/null syntactic effects when reading naturalistic stimuli (e.g. Demberg and Keller 2008; Frank and Bod 2011; Schijndel and Schuler 2013)

Strong syntactic effects in brains when listening to naturalistic stimuli

Strong syntactic effects when reading constructed stimuli (e.g. Grodner and Gibson 2005)

Weak/null syntactic effects when reading naturalistic stimuli

(e.g. Demberg and Keller 2008; Frank and Bod 2011; Schijndel and Schuler 2013)

Strong syntactic effects in brains when listening to naturalistic stimuli

Possible implication:

Some computational demands may not cause readers to slow down

- Brennan, Jonathan et al. (2016). "Abstract linguistic structure correlates with temporal activity during naturalistic comprehension". In: Brain and Language 157, pp. 81–94.
- Campbell, Karen L and Lorraine K Tyler (2018). "Language-related domain-specific and domain-general systems in the human brain". In: <u>Current opinion in behavioral sciences</u> 21, pp. 132–137.
- Caplan, David and Gloria S Waters (1999). "Verbal working memory and sentence comprehension". In: <u>Behavioral and Brain Sciences</u> 22.1, pp. 77–94.
- Demberg, Vera and Frank Keller (2008). "Data from eye-tracking corpora as evidence for theories of syntactic processing complexity". In: <u>Cognition</u> 109.2, pp. 193–210.
- Diachek, Evgeniia et al. (2019). "The domain-general multiple demand (MD) network does not support core aspects of language comprehension: A large-scale fMRI investigation". In:
- Duncan, John (2010). "The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour". In: <u>Trends in Cognitive Sciences</u> 14.4, pp. 172–179.

 Federmeier, Kara D, Suzanne R Jongman, and Jakub M Szewczyk (2020). "Examining the Role of General Cognitive Skills in Language Processing: A Window Into Complex Cognition". In: <u>Current Directions in Psychological Science</u>, p. 0963721420964095.
 Federmeier, Kara D et al. (2002). "The impact of semantic memory organization and sentence context information on spoken language processing by younger and older adults: An ERP

study". In: Psychophysiology 39.2, pp. 133–146.

- Fedorenko, Evelina and Idan A Blank (2020). "Broca's Area Is Not a Natural Kind". In: Trends in Cognitive Sciences.
- Fedorenko, Evelina, Edward Gibson, and Douglas Rohde (2006). "The nature of working memory capacity in sentence comprehension: Evidence against domain-specific working memory resources". In: Journal of memory and language 54.4, pp. 541–553.
- Fedorenko, Evelina et al. (2010). "New method for fMRI investigations of language: defining ROIs functionally in individual subjects". In: Journal of neurophysiology 104.2, pp. 1177–1194.

Ferreira, Fernanda and Suphasiree Chantavarin (2018), "Integration and prediction in language processing: A synthesis of old and new". In: Current directions in psychological science 27.6, pp. 443–448. Fiebach, Christian J, Matthias Schlesewsky, and Angela D Friederici (2001). "Syntactic working memory and the establishment of filler-gap dependencies: Insights from ERPs and fMRI". In: Journal of psycholinguistic research 30.3, pp. 321–338. Frank, Stefan L and Rens Bod (June 2011). "Insensitivity of the Human Sentence-Processing System to Hierarchical Structure". In: Psychological Science 22.6, pp. 829-834. ISSN: 0956-7976. DOI: 10.1177/0956797611409589. URL: http://www.ncbi.nlm.nih.gov/pubmed/21586764http: //journals.sagepub.com/doi/10.1177/0956797611409589. Friedrich, Roland and Angela D Friederici (2009). "Mathematical logic in the human brain: svntax". In: PloS one 4.5.

- Frost, Martin A and Rainer Goebel (2012). "Measuring structural–functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment". In: <u>Neuroimage</u> 59.2, pp. 1369–1381.
- Futrell, Richard et al. (May 2018). "The Natural Stories Corpus". In: <u>Proceedings of the Eleventh International Conference on Language Resources and Evaluation</u> Ed. by Nicoletta Calzolari et al. Paris, France: European Language Resources Association (ELRA). ISBN: 979-10-95546-00-9.
- Gambi, Chiara et al. (2018). "The development of linguistic prediction: Predictions of sound and meaning in 2- to 5-year-olds". In: Journal of Experimental Child Psychology 173, pp. 351–370. ISSN: 0022-0965. DOI: https://doi.org/10.1016/j.jecp.2018.04.012. URL: http://www.sciencedirect.com/science/article/pii/S0022096517307531.
- Gibson, Edward (2000). "The dependency locality theory: A distance-based theory of linguistic complexity". In:

Image, language, brain: Papers from the first mind articulation project symposium. Cambridge, MA: MIT {P}ress, pp. 95–126.

- Grodner, Daniel J and Edward Gibson (2005). "Consequences of the serial nature of linguistic input". In: Cognitive Science 29, pp. 261–291.
- Hale, John (2001). "A probabilistic Earley parser as a psycholinguistic model". In: Proceedings of the Second Meeting of the North American Chapter of the Association for Com pp. 1–8. doi: 10.3115/1073336.1073357. URL: http://www.aclweb.org/anthology/N01-1021http://portal.acm.org/citation.cfm?doid=1073336.1073357.
- Handwerker, Daniel A, John M Ollinger, and Mark D'Esposito (2004). "Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses.". In: <u>NeuroImage</u> 21.4, pp. 1639–1651. URL: http://www.ncbi.nlm.nih.gov/pubmed/15050587.
- Hasson, Uri and Christopher J Honey (2012). "Future trends in Neuroimaging: Neural processes as expressed within real-life contexts". In: <u>NeuroImage</u> 62.2, pp. 1272–1278.
 Hasson, Uri et al. (2018). "Grounding the neurobiology of language in first principles: The necessity of non-language-centric explanations for language comprehension". In: <u>Cognition</u> 180, pp. 135–157.

- Henderson, John M et al. (2016). "Language structure in the brain: A fixation-related fMRI study of syntactic surprisal in reading". In: Neuroimage 132, pp. 293-300. Huettig, Falk and Nivedita Mani (2016). "Is prediction necessary to understand language? Probably not". In: Language, Cognition and Neuroscience 31.1, pp. 19-31. January, David, John C Trueswell, and Sharon L Thompson-Schill (2009). "Co-localization of Stroop and syntactic ambiguity resolution in Broca's area: Implications for the neural basis of sentence processing". In: Journal of Cognitive Neuroscience 21.12, pp. 2434-2444. Kuperberg, Gina R and T Florian Jaeger (2016). "What do we mean by prediction in language comprehension?" In: Language, cognition and neuroscience 31.1, pp. 32–59. Kuperberg, Gina R et al. (2003). "Distinct patterns of neural modulation during the processing of conceptual and syntactic anomalies". In: Journal of Cognitive Neuroscience 15.2, pp. 272-293.
- Levy, Roger (2008). "Expectation-based syntactic comprehension". In: <u>Cognition</u> 106.3, pp. 1126–1177.

- Lewis, Richard L and Shravan Vasishth (2005). "An activation-based model of sentence processing as skilled memory retrieval". In: <u>Cognitive Science</u> 29.3, pp. 375–419.
- Linck, Jared A et al. (2014). "Working memory and second language comprehension and production: A meta-analysis". In: Psychonomic bulletin \& review 21.4, pp. 861–883.
- Lopopolo, Alessandro et al. (2017). "Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain". In: <u>PloS one</u> 12.5, e0177794.
- Lopopolo, Alessandro et al. (2020). "Distinguishing syntactic operations in the brain: Dependency and phrase-structure parsing". In: <u>Neurobiology of Language</u> Just Accepted, pp. 1–64.
- Mani, Nivedita and Falk Huettig (2012). "Prediction during language processing is a piece of cake—But only for skilled producers.". In:

Journal of Experimental Psychology: Human Perception and Performance 38.4, p. 843.

- Novick, Jared M, John C Trueswell, and Sharon L Thompson-Schill (2005). "Cognitive control and parsing: Reexamining the role of Broca's area in sentence comprehension". In: Cognitive, Affective, \& Behavioral Neuroscience 5.3, pp. 263–281.
- Patel, Aniruddh D (2003). "Language, music, syntax and the brain". In: <u>Nature Neuroscience</u> 6.7, pp. 674–681.
- Pickering, Martin J and Chiara Gambi (2018). "Predicting while comprehending language: A theory and review.". In: Psychological bulletin 144.10, p. 1002.
- Poldrack, Russell A (2006). "Can cognitive processes be inferred from neuroimaging data?" In: <u>Trends in cognitive sciences</u> 10.2, pp. 59–63.
- Rasmussen, Nathan E and William Schuler (2018). "Left-Corner Parsing With Distributed Associative Memory Produces Surprisal and Locality Effects". In: <u>Cognitive Science</u> 42, pp. 1009–1042.
- Schijndel, Marten van and William Schuler (2013). "An Analysis of Frequency- and Memory-Based Processing Costs". In:

Proceedings of Human Language Technologies: The 2013 Annual Conference of the North An

Shain, Cory and William Schuler (2018). "Deconvolutional time series regression: A technique for modeling temporally diffuse effects". In:

Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2679–2689.

- (2019). "Continuous-Time Deconvolutional Regression for Psycholinguistic Modeling". In: <u>PsyArXiv</u>.
- Smith, Nathaniel J and Roger Levy (2013). "The effect of word predictability on reading time is logarithmic". In: <u>Cognition</u> 128, pp. 302–319.
- Stowe, Laurie A et al. (1998). "Localizing components of a complex task: Sentence processing and working memory". In: <u>Neuroreport</u> 9.13, pp. 2995–2999.
- Strijkers, Kristof et al. (2019). "Grammatical class modulates the (left) inferior frontal gyrus within 100 milliseconds when syntactic context is predictive". In: Scientific reports 9.1, p. 4830.
- Swets, Benjamin et al. (2008). "Underspecification of syntactic ambiguities: Evidence from self-paced reading". In: <u>Memory and Cognition</u> 36.1, pp. 201–216.

- Tettamanti, Marco and Dorothea Weniger (2006). "Broca's area: A supramodal hierarchical processor?" In: <u>Cortex</u> 42.4, pp. 491–494.
- van Schijndel, Marten and Tal Linzen (2018). "A Neural Model of Adaptation in Reading". In: EMNLP 2018, pp. 4704–4710.
- van Schijndel, Marten and William Schuler (2013). "An Analysis of Frequency- and Memory-Based Processing Costs". In:

Proceedings of Human Language Technologies: The 2013 Annual Conference of the North An Association for Computational Linguistics.

Willems, Roel M et al. (2015). "Prediction during natural language comprehension". In: <u>Cerebral Cortex</u> 26.6, pp. 2506–2516.

- Hierarchic sequential prediction is a domain-general skill (vanschijndeletal13:tcs2; Smith and Levy 2013; Rasmussen and Schuler 2018)
- + Variation in executive function modulates prediction effects (Federmeier et al. 2002; Mani and Huettig 2012; Gambi et al. 2018)
- + Domain-general executive regions engage during some language tasks (Kuperberg et al. 2003; Novick et al. 2005; January et al. 2009, cf. Diachek et al. 2019)
- Broca's may be universal syntactic processor
 (Patel 2003; Tettamanti and Weniger 2006; Friedrich and Friederici 2009, cf. Fedorenko and Blank 2020)
- + Plausible executive resource: fronto-parietal multiple demand (MD) network (Duncan 2010)
- + Hypothesis 2: Linguistic prediction recruits MD

- Hierarchic sequential prediction is a domain-general skill (vanschijndeletal13:tcs2; Smith and Levy 2013; Rasmussen and Schuler 2018)
- + Variation in executive function modulates prediction effects (Federmeier et al. 2002; Mani and Huettig 2012; Gambi et al. 2018)
- + Domain-general executive regions engage during some language tasks (Kuperberg et al. 2003; Novick et al. 2005; January et al. 2009, cf. Diachek et al. 2019)
- Broca's may be universal syntactic processor
 (Patel 2003; Tettamanti and Weniger 2006; Friedrich and Friederici 2009, cf. Fedorenko and Blank 2020)
- Plausible executive resource: fronto-parietal multiple demand (MD) network (Duncan 2010)
- + Hypothesis 2: Linguistic prediction recruits MD

- + Hierarchic sequential prediction is a domain-general skill (vanschijndeletal13:tcs2; Smith and Levy 2013; Rasmussen and Schuler 2018)
- + Variation in executive function modulates prediction effects (Federmeier et al. 2002; Mani and Huettig 2012; Gambi et al. 2018)
- + Domain-general executive regions engage during some language tasks (Kuperberg et al. 2003; Novick et al. 2005; January et al. 2009, cf. Diachek et al. 2019)
- Broca's may be universal syntactic processor
 (Patel 2003; Tettamanti and Weniger 2006; Friedrich and Friederici 2009, cf. Fedorenko and Blank 2020)
- Plausible executive resource: fronto-parietal multiple demand (MD) network (Duncan 2010)
- + Hypothesis 2: Linguistic prediction recruits MD

- + Hierarchic sequential prediction is a domain-general skill (vanschijndeletal13:tcs2; Smith and Levy 2013; Rasmussen and Schuler 2018)
- + Variation in executive function modulates prediction effects (Federmeier et al. 2002; Mani and Huettig 2012; Gambi et al. 2018)
- + Domain-general executive regions engage during some language tasks (Kuperberg et al. 2003; Novick et al. 2005; January et al. 2009, cf. Diachek et al. 2019)
- Broca's may be universal syntactic processor
 (Patel 2003; Tettamanti and Weniger 2006; Friedrich and Friederici 2009, cf. Fedorenko and Blank 2020)
- + Plausible executive resource: fronto-parietal multiple demand (MD) network (Duncan 2010)
- + Hypothesis 2: Linguistic prediction recruits MD

- + Hierarchic sequential prediction is a domain-general skill (vanschijndeletal13:tcs2; Smith and Levy 2013; Rasmussen and Schuler 2018)
- + Variation in executive function modulates prediction effects (Federmeier et al. 2002; Mani and Huettig 2012; Gambi et al. 2018)
- + Domain-general executive regions engage during some language tasks (Kuperberg et al. 2003; Novick et al. 2005; January et al. 2009, cf. Diachek et al. 2019)
- Broca's may be universal syntactic processor
 (Patel 2003; Tettamanti and Weniger 2006; Friedrich and Friederici 2009, cf. Fedorenko and Blank 2020)
- + Plausible executive resource: fronto-parietal multiple demand (MD) network (Duncan 2010)
- + Hypothesis 2: Linguistic prediction recruits MD

- + Hierarchic sequential prediction is a domain-general skill (vanschijndeletal13:tcs2; Smith and Levy 2013; Rasmussen and Schuler 2018)
- + Variation in executive function modulates prediction effects (Federmeier et al. 2002; Mani and Huettig 2012; Gambi et al. 2018)
- + Domain-general executive regions engage during some language tasks (Kuperberg et al. 2003; Novick et al. 2005; January et al. 2009, cf. Diachek et al. 2019)
- + Broca's may be universal syntactic processor (Patel 2003; Tettamanti and Weniger 2006; Friedrich and Friederici 2009, cf. Fedorenko and Blank 2020)
- + Plausible executive resource: fronto-parietal multiple demand (MD) network (Duncan 2010)
- + Hypothesis 2: Linguistic prediction recruits MD

- + Hierarchic sequential prediction is a domain-general skill (vanschijndeletal13:tcs2; Smith and Levy 2013; Rasmussen and Schuler 2018)
- + Variation in executive function modulates prediction effects (Federmeier et al. 2002; Mani and Huettig 2012; Gambi et al. 2018)
- + Domain-general executive regions engage during some language tasks (Kuperberg et al. 2003; Novick et al. 2005; January et al. 2009, cf. Diachek et al. 2019)
- + Broca's may be universal syntactic processor (Patel 2003; Tettamanti and Weniger 2006; Friedrich and Friederici 2009, cf. Fedorenko and Blank 2020)
- + Plausible executive resource: fronto-parietal multiple demand (MD) network (Duncan 2010)
- + Hypothesis 2: Linguistic prediction recruits MD

OOS hypothesis tests: COMBINED

Baseline model (both interactions ablated)

OOS hypothesis tests: COMBINED

