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Time and the mind

+ Lots of hypotheses directly concern time:
+ How closely time-locked are attention and eye movements?

(Just and Carpenter 1980; Posner 1980; Reichle et al. 1998)

+ Is there a “buffer” in human sentence processing?
(Morton 1964; Mitchell 1984; Mollica and Piantadosi 2017)

+ Others depend on assumptions about timecourse
+ Are there distinct locality and predictability effects in reading?

(Grodner and Gibson 2005; Levy 2008; Levy et al. 2013)

+ Can syntactic representations be detected in the brain?
(Henderson et al. 2015; Brennan et al. 2016)
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Time and the mind

+ Latency is taken for granted for some measures
+ EEG/MEG

Event-related potentials/fields

+ Visual world ET
Event-related change in fixation proportion

+ fMRI
Hemodynamic response function (HRF)

+ Latency is often ignored for others
+ Eye-tracking during reading

(Frank and Bod 2011; van Schijndel and Schuler 2015)

+ Self-paced reading
(Shain et al. 2016; van Schijndel and Linzen 2018)
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+ Change spillover of one baseline variable:
+ Locality: p = 0.816
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+ Spillover is a distributed lag (DL) or finite impulse response (FIR) model

+ DL/FIR is poorly suited to natural language

+ Key problem: non-uniform time series

If you journey to the city of

+ Spillover ignores variation in event duration
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Each of these domains is typically analyzed with different methods.
CDR provides a unified approach.
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+ Specify IRF kernel (exponential, Gaussian, gamma, etc.)

+ Estimate IRF parameters from data

+ Compare goodness of fit on held-out evaluation set
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Does it work?



Yes.
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Naturalistic Reading Experiments

+ Are CDR estimates
+ Plausible?
+ Consistent?
+ Externally valid?
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Naturalistic Reading Experiments: Plausible and Consistent

Exponential Normal

Shifted Gamma LCG(10)

• rate word length unigram surprisal 5-gram surprisal

Natural Stories (SPR; Futrell et al. 2018)
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Exponential Normal

Shifted Gamma LCG(10)

• rate sac len prev was fix word length unigram surprisal 5-gram surprisal

Dundee (ET, go-past; Kennedy et al. 2003)



Naturalistic Reading Experiments: Externally Valid

Permutation test
Baseline p

LME 1.0e-4***
LME-S 1.0e-4***

GAM 1.0e-4***
GAM-S 1.0e-4***

CDR generalizes better



Naturalistic fMRI Experiments: Plausible and Consistent

HRF 1 HRF 2

HRF 5 LCG(10)

• rate sound power unigram surprisal 5-gram surprisal

Natural Stories (fMRI; Shain et al. 2019)



Naturalistic fMRI Experiments: Externally Valid

Permutation test
Baseline p

Canonical HRF 4.0e-4***
Interpolated 1.0e-4***

Averaged 1.0e-4***
Lanczos 1.0e-4***

CDR generalizes better



What can CDR tell us about the mind?



Frequency vs. Predictability (Shain 2019)

+ Are frequency and predictability effects driven by different mechanisms?
+ Yes

(Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004)

+ No
(Norris 2006; Levy 2008; Rasmussen and Schuler 2018)

+ CDR analysis of Dundee, Natural Stories, and UCL does not support a dissociation
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Domain-Generality and Syntax-Sensitivity of Prediction Effects
(Shain et al. 2019)

+ Does linguistic prediction recruit domain-general mechanisms?
(Kaan and Swaab 2002; Novick et al. 2005; Federmeier et al. 2010; Gambi et al. 2018)

+ Is linguistic prediction sensitive to syntactic structure?
(Frank and Bod 2011; Frank and Christiansen 2018)

+ CDR analysis of fMRI supports domain-specific, syntax-sensitive word prediction



Domain-Generality and Syntax-Sensitivity of Prediction Effects
(Shain et al. 2019)

+ Does linguistic prediction recruit domain-general mechanisms?
(Kaan and Swaab 2002; Novick et al. 2005; Federmeier et al. 2010; Gambi et al. 2018)

+ Is linguistic prediction sensitive to syntactic structure?
(Frank and Bod 2011; Frank and Christiansen 2018)

+ CDR analysis of fMRI supports domain-specific, syntax-sensitive word prediction



Domain-Generality and Syntax-Sensitivity of Prediction Effects
(Shain et al. 2019)

+ Does linguistic prediction recruit domain-general mechanisms?
(Kaan and Swaab 2002; Novick et al. 2005; Federmeier et al. 2010; Gambi et al. 2018)

+ Is linguistic prediction sensitive to syntactic structure?
(Frank and Bod 2011; Frank and Christiansen 2018)

+ CDR analysis of fMRI supports domain-specific, syntax-sensitive word prediction



A Step Further: CDRNN



A Step Further: CDRNN

+ CDR directly models influence of past on present
+ Still makes lots of strict (i.e. implausible) assumptions:

+ Fixed (stationary) and context-independent IRF
+ Linear effects
+ Additive effects
+ Constant variance (homoskedasticity)

+ We can relax these with a neural net and still have an interpretable IRF...



A Step Further: CDRNN

+ CDR directly models influence of past on present
+ Still makes lots of strict (i.e. implausible) assumptions:

+ Fixed (stationary) and context-independent IRF
+ Linear effects
+ Additive effects
+ Constant variance (homoskedasticity)

+ We can relax these with a neural net and still have an interpretable IRF...



A Step Further: CDRNN

+ CDR directly models influence of past on present
+ Still makes lots of strict (i.e. implausible) assumptions:

+ Fixed (stationary) and context-independent IRF
+ Linear effects
+ Additive effects
+ Constant variance (homoskedasticity)

+ We can relax these with a neural net and still have an interpretable IRF...



A Step Further: CDRNN

+ CDR directly models influence of past on present
+ Still makes lots of strict (i.e. implausible) assumptions:

+ Fixed (stationary) and context-independent IRF
+ Linear effects
+ Additive effects
+ Constant variance (homoskedasticity)

+ We can relax these with a neural net and still have an interpretable IRF...



A Step Further: CDRNN

+ CDR directly models influence of past on present
+ Still makes lots of strict (i.e. implausible) assumptions:

+ Fixed (stationary) and context-independent IRF
+ Linear effects
+ Additive effects
+ Constant variance (homoskedasticity)

+ We can relax these with a neural net and still have an interpretable IRF...



A Step Further: CDRNN

+ CDR directly models influence of past on present
+ Still makes lots of strict (i.e. implausible) assumptions:

+ Fixed (stationary) and context-independent IRF
+ Linear effects
+ Additive effects
+ Constant variance (homoskedasticity)

+ We can relax these with a neural net and still have an interpretable IRF...



A Step Further: CDRNN

+ CDR directly models influence of past on present
+ Still makes lots of strict (i.e. implausible) assumptions:

+ Fixed (stationary) and context-independent IRF
+ Linear effects
+ Additive effects
+ Constant variance (homoskedasticity)

+ We can relax these with a neural net and still have an interpretable IRF...



A Step Further: CDRNN

+ CDRNN: parameterize IRF using deep neural transform of time series

+ IRF = multi-dimensional manifold over predictors + time



A Step Further: CDRNN

+ CDRNN: parameterize IRF using deep neural transform of time series

+ IRF = multi-dimensional manifold over predictors + time



z

z′
a
x

RNN

hRNN + hin

τ,h
IRF

y

e

∑

+

∼

t

+

∼

t − 1

+

∼

t − 2

+

∼

t − 3

+

∼

t − 4



A Step Further: CDRNN

+ Captures:
+ Influence of time and context on IRF
+ Changing error distribution over time
+ Non-linear interactions

+ IRF can be queried post hoc at
+ Any combination of predictor values
+ Any timepoint
+ Any initial state

+ Test hypotheses using out-of-sample goodness-of-fit

+ Detailed analysis of complex dynamics, weak initial assumptions
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Thank you!
Code: https://github.com/coryshain/cdr Preprint:

https://psyarxiv.com/whvk5/

https://github.com/coryshain/cdr
https://psyarxiv.com/whvk5/
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