A Large-Scale Study of the Effects of Word Frequency and Predictability in Naturalistic Reading

Cory Shain

NAACL 2019

bottle kettle

Frequency effect

Sam accused Harper of being touchy, which is like the pot calling the

bottle kettle

Sam accused Harper of being touchy, which is like the pot calling the

Sam accused Harper of being touchy, which is like the pot calling the

bottle	kettle
slow	fast

Predictability effect

Both frequency and predictability effects have been shown by reading experiments

Both **frequency** and **predictability** effects have been shown by reading experiments

Do they arise from different processing mechanisms?

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- Processing costs come from resource mellocation between competing interpretations, proportional to the information/surprisal of each word
- Probability model subsumes lexical frequencies
- Hale 2001; Norris 2006; Levy 2008; Rasmussen and Schuler 2018
- Prediction: No independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- Frequency effects come from retrieval mechanisms (context-independent
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects
- + No
 - Processing costs come from resource mellocation between competing interpretations, proportional to the information/surprise) of each word
 - Probability model subsumes lexical frequencies
 - Hale 2001; Norris 2006; Levy 2008; Rasmussen and Schuler 2018
 - Prediction: No independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- + Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- Processing costs come from resource realisection between competing interpretations, proportional to the information/surprisal of each word.
- Probability model subsumes lexical frequencies
- Hale 2001; Norris 2006; Levy 2008; Rasmussen and Schuler 2018
- Prediction: No Independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- + Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- Processing costs come from resource resillocation between competing interpretations proportional to the information/surprisal of each word
- Probability model subsumes lexical frequencies
- Hale 2001; Norris 2008; Levy 2008; Rasmussen and Schuler 2018
- Prediction: No Independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- + Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- No

Processing costs come from resource reallocation between competing interpretations, proportional to the information/surprisal of each word Probability model subsumes lexical frequencies Hele 2001; Norrie 2006; Levy 2006; Resmussen and Schuler 2018 Prediction: No Independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- + Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- No

- Processing costs come from resource reallocation between competing interpretations, proportional to the information/surprisal of each word
- Probability model subsumes lexical frequencies
- + Hale 2001; Norris 2006; Levy 2008; Rasmussen and Schuler 2018
- + Prediction: No independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- + Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- + Processing costs come from **resource reallocation** between competing interpretations, proportional to the information/surprisal of each word
- + Probability model subsumes lexical frequencies
- + Hale 2001; Norris 2006; Levy 2008; Rasmussen and Schuler 2018
- + Prediction: No independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- + Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- + Processing costs come from **resource reallocation** between competing interpretations, proportional to the information/surprisal of each word
- + Probability model subsumes lexical frequencies
- + Hale 2001; Norris 2006; Levy 2008; Rasmussen and Schuler 2018
- + Prediction: No independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- + Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- + Processing costs come from **resource reallocation** between competing interpretations, proportional to the information/surprisal of each word
- + Probability model subsumes lexical frequencies
- + Hale 2001; Norris 2006; Levy 2008; Rasmussen and Schuler 2018
- + **Prediction:** No independent frequency and predictability effects

- + Predictability effects come from anticipatory mechanisms (context-dependent)
- + Frequency effects come from retrieval mechanisms (context-independent)
- + Seidenberg and McClelland 1989; Coltheart et al. 2001; Harm and Seidenberg 2004
- + Prediction: Independent frequency and predictability effects

- + Processing costs come from **resource reallocation** between competing interpretations, proportional to the information/surprisal of each word
- + Probability model subsumes lexical frequencies
- + Hale 2001; Norris 2006; Levy 2008; Rasmussen and Schuler 2018
- + Prediction: No independent frequency and predictability effects

+ Although many studies have shown additive frequency and predictability effects (Staub 2015):

- + Cloze estimates are course-grained (Smith and Levy 2013)
- Constructed stimuli can induce artifacts (Demberg and Keller 2008; Hasson and Honey 2012; Campbell and Tyler 2018)

- + Although many studies have shown additive frequency and predictability effects (Staub 2015):
 - + Cloze estimates are course-grained (Smith and Levy 2013)
 - Constructed stimuli can induce artifacts (Demberg and Keller 2008; Hasson and Honey 2012; Campbell and Tyler 2018)

- + Although many studies have shown additive frequency and predictability effects (Staub 2015):
 - + Cloze estimates are course-grained (Smith and Levy 2013)
 - + Constructed stimuli can induce artifacts (Demberg and Keller 2008; Hasson and Honey 2012; Campbell and Tyler 2018)

+ Are there distinct frequency/predictability effects in naturalistic sentence processing?

+ Challenge 1: Collinearity

+ Solution: Large data

- Natural Stories (self-paced reading) (Futrell et al. 2018)
- Dundee (eye-tracking) (Kennedy et al. 2003)
- UCL (eye-tracking) (Frank et al. 2013)
- 1M+ data points

+ Challenge 1: Collinearity

+ Solution: Large data

- + Natural Stories (self-paced reading) (Futrell et al. 2018)
- Dundee (eye-tracking) (Kennedy et al. 2003)
- + UCL (eye-tracking) (Frank et al. 2013)
- + 1M+ data points

+ Challenge 1: Collinearity

+ Solution: Large data

- + Natural Stories (self-paced reading) (Futrell et al. 2018)
 - Dundee (eye-tracking) (Kennedy et al. 2003)
- + UCL (eye-tracking) (Frank et al. 2013)
- + 1M+ data points

- + Challenge 1: Collinearity
- + Solution: Large data
 - + Natural Stories (self-paced reading) (Futrell et al. 2018)
 - + Dundee (eye-tracking) (Kennedy et al. 2003)
 - + UCL (eye-tracking) (Frank et al. 2013)
 - + 1M+ data points

- + Challenge 1: Collinearity
- + Solution: Large data
 - + Natural Stories (self-paced reading) (Futrell et al. 2018)
 - + Dundee (eye-tracking) (Kennedy et al. 2003)
 - + UCL (eye-tracking) (Frank et al. 2013)
 - 1M+ data points

- + Challenge 1: Collinearity
- + Solution: Large data
 - + Natural Stories (self-paced reading) (Futrell et al. 2018)
 - + Dundee (eye-tracking) (Kennedy et al. 2003)
 - + UCL (eye-tracking) (Frank et al. 2013)
 - + 1M+ data points

+ Challenge 2: Temporal diffusion (Erlich and Rayner 1983)

Solution: Deconvolutional time series regression (Shain and Schuler 2018)

- + **Challenge 2:** Temporal diffusion (Erlich and Rayner 1983)
- + Solution: Deconvolutional time series regression (Shain and Schuler 2018)

+ Challenge 3: External validity

Solution: Non-parametric out-of-sample paired permutation test (cf. LRT)

- + Challenge 3: External validity
- + Solution: Non-parametric out-of-sample paired permutation test (cf. LRT)

+ Frequency: Unigram logprob

- + Predictability: 5-gram surprisal
- KenLM (Heafield et al. 2013) trained on Gigaword 3 (Graff et al. 2007)
- + By-subject random intercepts, slopes, and response shapes
- + Log-ms response
- + 50-50 train-test split
- + Ablative permutation tests

- + Frequency: Unigram logprob
- + **Predictability:** 5-gram surprisal
- KenLM (Heafield et al. 2013) trained on Gigaword 3 (Graff et al. 2007)
- + By-subject random intercepts, slopes, and response shapes
- + Log-ms response
- + 50-50 train-test split
- + Ablative permutation tests

- + Frequency: Unigram logprob
- + Predictability: 5-gram surprisal
- + KenLM (Heafield et al. 2013) trained on Gigaword 3 (Graff et al. 2007)
- + By-subject random intercepts, slopes, and response shapes
- + Log-ms response
- + 50-50 train-test split
- Ablative permutation tests

- + Frequency: Unigram logprob
- + Predictability: 5-gram surprisal
- + KenLM (Heafield et al. 2013) trained on Gigaword 3 (Graff et al. 2007)
- + By-subject random intercepts, slopes, and response shapes
- + Log-ms response
- + 50-50 train-test split
- Ablative permutation tests

- + Frequency: Unigram logprob
- + Predictability: 5-gram surprisal
- + KenLM (Heafield et al. 2013) trained on Gigaword 3 (Graff et al. 2007)
- + By-subject random intercepts, slopes, and response shapes
- + Log-ms response
- + 50-50 train-test split
- Ablative permutation tests

- + Frequency: Unigram logprob
- + Predictability: 5-gram surprisal
- + KenLM (Heafield et al. 2013) trained on Gigaword 3 (Graff et al. 2007)
- + By-subject random intercepts, slopes, and response shapes
- + Log-ms response
- + 50-50 train-test split
- Ablative permutation tests

- + Frequency: Unigram logprob
- + Predictability: 5-gram surprisal
- + KenLM (Heafield et al. 2013) trained on Gigaword 3 (Graff et al. 2007)
- + By-subject random intercepts, slopes, and response shapes
- + Log-ms response
- + 50-50 train-test split
- + Ablative permutation tests

	Effect estimate (log-ms)		
Corpus	Unigram	5-gram	
Natural Stories	-0.0018	0.0174	
Dundee	-0.0067	0.0117	
UCL	0.0005	0.0184	

	Effect estimate (log-ms)		
Corpus	Unigram	5-gram	
Natural Stories	-0.0018	0.0174	
Dundee	-0.0067	0.0117	
UCL	0.0005	0.0184	

Larger-magnitude 5-gram effect

-

		(Corpus	
Comparison	Pooled	Natural Stories	Dundee	UCL
5-gram only vs. baseline	0.0001***	0.0001***	0.0001***	0.0001***
Unigram only vs. baseline	0.0001***	0.0001***	0.0001***	0.0001***
5-gram + Unigram vs. Unigram-only	0.0001***	0.0001***	0.0626	0.0006***
5-gram + Unigram vs. 5-gram-only	0.1515	0.1831	0.0105	0.1491

		Corpus		
Comparison	Pooled	Natural Stories	Dundee	UCL
5-gram only vs. baseline	0.0001***	0.0001***	0.0001***	0.0001***
Unigram only vs. baseline	0.0001***	0.0001***	0.0001***	0.0001***
5-gram + Unigram vs. Unigram-only	0.0001***	0.0001***	0.0626	0.0006***
5-gram + Unigram vs. 5-gram-only	0.1515	0.1831	0.0105	0.1491

No evidence of independent freq/pred effects

Findings disagree with previous experiments

- Statistical vs. cloze predictability
- Naturalistic vs. constructed stimuli

- Fail to reject null # Accept null
- At best, attenuated in naturalistic sentence processing

+ Findings disagree with previous experiments

- Statistical vs. cloze predictability
- Naturalistic vs. constructed stimuli

 Artificial alimuli/tasks angage problem-solving regions (Kaan and Swaab 2002; Novick et al. 2005; Blank and Federanko 2017)

Comprehension-as-problem-solving may diminish influence of preceding worldow

- Fall to reject null # Accept null
- At best, attenuated in naturalistic sentence processing

+ Findings disagree with previous experiments

- + Statistical vs. cloze predictability
- Naturalistic vs. constructed stimuli
 - Artificial stimul/tasks engage problem-solving regions (Kaan and Swaab 2002; Novick et al. 2005; Blank and Fedorenko 2017)

Comprohension-as-problem-solving may diminish influence of preceding words

- Fail to reject null # Accept null
- At best, attenuated in naturalistic sentence processing

+ Findings disagree with previous experiments

- + Statistical vs. cloze predictability
- Naturalistic vs. constructed stimuli
 - + Artificial stimuli/tasks engage problem-solving regions (Kaan and Swaab 2002; Novick et al. 2005; Blank and Fedorenko 2017)
 - + Comprehension-as-problem-solving may diminish influence of preceding words

- Fail to reject null + Accept nulli
- At best, attenuated in naturalistic sentence processing

- + Findings disagree with previous experiments
 - + Statistical vs. cloze predictability
 - + Naturalistic vs. constructed stimuli
 - + Artificial stimuli/tasks engage problem-solving regions (Kaan and Swaab 2002; Novick et al. 2005; Blank and Fedorenko 2017)
 - + Comprehension-as-problem-solving may diminish influence of preceding words

- Fail to reject null # Accept null
- At best, attenuated in naturalistic sentence processing

- + Findings disagree with previous experiments
 - + Statistical vs. cloze predictability
 - + Naturalistic vs. constructed stimuli
 - + Artificial stimuli/tasks engage problem-solving regions (Kaan and Swaab 2002; Novick et al. 2005; Blank and Fedorenko 2017)
 - + Comprehension-as-problem-solving may diminish influence of preceding words

Frequency effects may still exist

Fail to reject null # Accept null At best, attenuated in naturalistic sentence processin

- + Findings disagree with previous experiments
 - + Statistical vs. cloze predictability
 - + Naturalistic vs. constructed stimuli
 - + Artificial stimuli/tasks engage problem-solving regions (Kaan and Swaab 2002; Novick et al. 2005; Blank and Fedorenko 2017)
 - $+ \ \ \, {\rm Comprehension-as-problem-solving\ may\ diminish\ influence\ of\ preceding\ words}$

- + Fail to reject null \neq Accept null
- + At best, attenuated in naturalistic sentence processing

- + Findings disagree with previous experiments
 - + Statistical vs. cloze predictability
 - + Naturalistic vs. constructed stimuli
 - + Artificial stimuli/tasks engage problem-solving regions (Kaan and Swaab 2002; Novick et al. 2005; Blank and Fedorenko 2017)
 - + Comprehension-as-problem-solving may diminish influence of preceding words
- + Frequency effects may still exist
 - + Fail to reject null \neq Accept null
 - + At best, attenuated in naturalistic sentence processing

- + Findings disagree with previous experiments
 - + Statistical vs. cloze predictability
 - + Naturalistic vs. constructed stimuli
 - + Artificial stimuli/tasks engage problem-solving regions (Kaan and Swaab 2002; Novick et al. 2005; Blank and Fedorenko 2017)
 - + Comprehension-as-problem-solving may diminish influence of preceding words
- + Frequency effects may still exist
 - + Fail to reject null \neq Accept null
 - + At best, attenuated in naturalistic sentence processing

Thank you!

Data preprocessing:

https://github.com/modelblocks/modelblocks-release

DTSR regression:

https://github.com/coryshain/dtsr

Acknowledgements:

National Science Foundation grants #1551313 and #1816891 Anonymous NAACL 2019 reviewers

References

- Blank, Idan and Evelina Fedorenko (2017). "Domain-general brain regions do not track linguistic input as closely as language-selective regions". In: Journal of Neuroscience, pp. 3616–3642.
- Campbell, Karen L and Lorraine K Tyler (2018). "Language-related domain-specific and domain-general systems in the human brain". In: <u>Current opinion in behavioral sciences</u> 21, pp. 132–137.
- Coltheart, Max et al. (2001). "DRC: a dual route cascaded model of visual word recognition and reading aloud.". In: <u>Psychological review</u> 108.1, p. 204.
- Demberg, Vera and Frank Keller (2008). "Data from eye-tracking corpora as evidence for theories of syntactic processing complexity". In: <u>Cognition</u> 109.2, pp. 193–210.
- Erlich, Kate and Keith Rayner (1983). "Pronoun assignment and semantic integration during reading: Eye movements and immediacy of processing". In:

Journal of Verbal Learning & Verbal Behavior 22, pp. 75-87.

Frank, Stefan L et al. (2013). "Reading time data for evaluating broad-coverage models of English sentence processing". In: Behavior Research Methods 45.4, pp. 1182–1190.

References

- Futrell, Richard et al. (2018). "The Natural Stories Corpus". In: <u>Proceedings of the Eleventh International Conference on Language Resources and Evaluation</u> Ed. by Nicoletta Calzolari et al. Paris, France: European Language Resources Association (ELRA). ISBN: 979-10-95546-00-9.
- Graff, David et al. (2007). <u>English Gigaword Third Edition LDC2007T07</u>. Philadelphia. URL: https://catalog.ldc.upenn.edu/LDC2007T07.
- Hale, John (2001). "A probabilistic Earley parser as a psycholinguistic model". In: Proceedings of the Second meeting of the North American Chapter of the Association for Com pp. 1–8. doi: 10.3115/1073336.1073357. URL: http://www.aclweb.org/anthology/N01-1021http://portal.acm.org/citation.cfm?doid=1073336.1073357.
- Harm, Michael W and Mark S Seidenberg (2004). "Computing the meanings of words in reading: cooperative division of labor between visual and phonological processes.". In: <u>Psychological review</u> 111.3, p. 662.
- Hasson, Uri and Christopher J Honey (2012). "Future trends in Neuroimaging: Neural processes as expressed within real-life contexts". In: <u>NeuroImage</u> 62.2, pp. 1272–1278.

References

Heafield, Kenneth et al. (2013). "Scalable modified Kneser-Ney language model estimation". In:

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. Sofia, Bulgaria, pp. 690–696.

- Kaan, Edith and Tamara Y Swaab (2002). "The brain circuitry of syntactic comprehension". In: <u>Trends in cognitive sciences</u> 6.8, pp. 350–356.
- Kennedy, Alan, James Pynte, and Robin Hill (2003). "The Dundee corpus". In: Proceedings of the 12th European conference on eye movement.
- Levy, Roger (2008). "Expectation-based syntactic comprehension". In: <u>Cognition</u> 106.3, pp. 1126–1177.
- Norris, Dennis (2006). "The Bayesian Reader: Explaining word recognition as an optimal Bayesian decision process.". In: <u>Psychological review</u> 113.2, p. 327.
- Novick, Jared M, John C Trueswell, and Sharon L Thompson-Schill (2005). "Cognitive control and parsing: Reexamining the role of Broca's area in sentence comprehension". In: Cognitive, Affective, \& Behavioral Neuroscience 5.3, pp. 263–281.

- Rasmussen, Nathan E and William Schuler (2018). "Left-Corner Parsing With Distributed Associative Memory Produces Surprisal and Locality Effects". In: <u>Cognitive science</u> 42, pp. 1009–1042.
- Seidenberg, Mark S and James L McClelland (1989). "A distributed, developmental model of word recognition and naming". In: <u>Psychological review</u> 96.4, p. 523.
- Shain, Cory and William Schuler (2018). "De
 - convolutional time series regression: A technique for modeling temporally diffuse effects". In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
- Smith, Nathaniel J and Roger Levy (2013). "The effect of word predictability on reading time is logarithmic". In: Cognition 128, pp. 302–319.
- Staub, Adrian (2015). "The effect of lexical predictability on eye movements in reading: Critical review and theoretical interpretation". In: Language and Linguistics Compass 9.8, pp. 311–327.

+ ShiftedGamma IRF

$$f(x; \alpha, \beta, \delta) = \frac{\beta^{\alpha}(x - \delta)^{\alpha - 1} e^{-\beta(x - \delta)}}{\Gamma(\alpha)}$$

- + Rate: Deconvolutional intercept
- + Word length: Word length in characters
- + Saccade length: Length of last saccade in words
- + Previous was fixated: Whether the previous word was fixated
- + Linear (Dirac Delta) IRF
 - + Sentence position: Index of word in sentence
 - + **Trial:** Index of word in document

IRF estimates

(b) Dundee

(c) UCL

Corpus	Length	Vocab	Token coverage	Type coverage
Natural Stories	10256	3104	99.58%	98.65%
Dundee	51501	12871	99.26%	97.21%
UCL	4957	1576	100%	100%