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2015):

+ Cloze estimates are course-grained (Smith and Levy 2013)
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+ No evidence of distinct, context-independent retrieval mechanism
+ Findings disagree with previous experiments

+ Statistical vs. cloze predictability
+ Naturalistic vs. constructed stimuli

+ Artificial stimuli/tasks engage problem-solving regions (Kaan and Swaab 2002; Novick et al.
2005; Blank and Fedorenko 2017)

+ Comprehension-as-problem-solving may diminish influence of preceding words

+ Frequency effects may still exist
+ Fail to reject null , Accept null
+ At best, attenuated in naturalistic sentence processing
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Thank you!
Data preprocessing:

https://github.com/modelblocks/modelblocks-release

DTSR regression:
https://github.com/coryshain/dtsr
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Baseline variables

+ ShiftedGamma IRF

f(x;α, β, δ) =
βα(x − δ)α−1e−β(x−δ)

Γ(α)

+ Rate: Deconvolutional intercept
+ Word length: Word length in characters
+ Saccade length: Length of last saccade in words
+ Previous was fixated: Whether the previous word was fixated

+ Linear (Dirac Delta) IRF
+ Sentence position: Index of word in sentence
+ Trial: Index of word in document



IRF estimates
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Coverage

Corpus Length Vocab Token coverage Type coverage
Natural Stories 10256 3104 99.58% 98.65%

Dundee 51501 12871 99.26% 97.21%
UCL 4957 1576 100% 100%


