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Why model language acquisition computationally?

Of interest to both science and engineering
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But...



NLP is (usually) cognitively implausible

+ Normally requires lots of annotated data

+ Microsoft’s Bing used 2100 hours of transcribed speech to train its speech recognizer (Dahl

et al. 2011)

+ Humans don’t have direct access to the right answers

+ Unrealistically large memory capacity

+ Human working memory constraints are severe compared to those of computers (Miller

1956; Cowan 2001; McElree 2001)

+ Non-incremental processing

+ Humans process language incrementally (Marslen-Wilson 1975; Tanenhaus et al. 1995)
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Modeling lexical acquisition with

unsupervised speech segmentation
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Speech segmentation: Segmenter network architecture
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Speech segmentation: Results (Brent)

Bd P Bd R Bd F Wd F

Our system 81 85 83 72

+ Examples:
+ yu wanttu si D6bUk

You wantto see thebook?

+ oke yusIt D* &nd 9l pUty) Suz b&kan

Okay, yousit there and I’ll putyour shoes backon

+ &nd lUk&t WAt D6kItiz pleIN wIT

And lookat what thekitty’s playing with

+ dId yu kQnt Ol6v DEm

Did you count allof them?

+ wan6 lUk&t 6nADR bUk

Wanna lookat another book?

+ If pApi b9ts pApi gEtss p&Nkt

If puppy bites, puppy getss panked.
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Speech segmentation: Results (Brent)

System Bd P Bd R Bd F Wd F

Goldwater 09 90 74 87 74

Johnson 09 - - - 88

Berg-Kirkpatrick 10 - - - 88

Fleck 08 95 74 83 71

Our system 81 85 83 72

Micha Elsner and Cory Shain (to appear). “Speech segmentation with a neural encoder model

of working memory”. In: EMNLP 2017



Speech segmentation: Results (Zerospeech ’15)

System Bd P Bd R Bd F Wd F

Lyzinski 15 18.8 64.0 29.0 2.4

Räsänen 15 75.7 33.7 46.7 9.6

Räsänen new 61.1 50.1 55.2 12.4

Kamper 16 66.5 58.8 62.4 20.6

Ours 62.4 43.2 51.1 9.3

Micha Elsner and Cory Shain (to appear). “Speech segmentation with a neural encoder model

of working memory”. In: EMNLP 2017



Speech segmentation: Dropout

Word dropout rate

Utt AE size
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Dropout and memory limits encourage better segmentations

Micha Elsner and Cory Shain (to appear). “Speech segmentation with a neural encoder model

of working memory”. In: EMNLP 2017
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Speech segmentation: Conclusion

Our results support the hypothesis that limited phonological memory facilitates lexical

acquisition by encouraging efficient segmentation

Micha Elsner and Cory Shain (to appear). “Speech segmentation with a neural encoder model

of working memory”. In: EMNLP 2017



Modeling grammar acquisition with

unsupervised PCFG induction



Grammar induction: Cognitive background

+ Humans have been shown to use distributional statistics in language acquisition (Saffran

et al. 1999)

+ Cognitively-constrained grammar induction allows us to study:

+ Utility of word distributions to syntax acquisition

+ Advantages/disadvantages of cognitive constraints

Cory Shain et al. (2016). “Memory-bounded left-corner unsupervised grammar induction on

child-directed input”. In: Proceedings of The 26th International Conference on Computational

Linguistics. Osaka, pp. 964–975
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Grammar induction: Previous work

+ Several raw-text constituency parsers exist (e.g. Seginer 2007; Ponvert, Baldridge, and

Erik 2011)

+ No system besides ours is

+ Depth-bounded (memory-limited)

+ Incremental

+ Typically constituents are not labeled
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Grammar induction: Model overview

+ Bayesian depth-bounded incremental left-corner PCFG induction system

+ Parses with depth-bounded hierarchical hidden Markov model (Schuler et al. 2010)

+ Trained using block Gibbs sampling

+ Produces a full labeled tree structure and PCFG model
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Grammar induction: Experiment

+ Experimental conditions designed to mimic conditions of early language learning:

+ Child-directed input: Child-directed utterances from the Eve corpus of Brown (1973),

distributed with CHILDES (MacWhinney 2000)
+ Limited depth: Depth was limited to 2

+ Children have more severe working memory limits than adults (Gathercole 1998)

+ Greater depths rarely needed for child-directed utterances

+ Small hypothesis space (Newport 1990): 4 left child categories, 4 right child categories, 8

parts of speech
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Grammar induction: Evaluation

+ Gold standard: Hand-corrected PTB-style trees for Eve (Pearl and Sprouse 2013)

+ Competitors:

+ CCL (Seginer 2007)

+ UPPARSE (Ponvert, Baldridge, and Erik 2011)

+ BMMM+DMV (Christodoulopoulos, Goldwater, and Steedman 2012)
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Grammar induction: COLING results

P R F1

Our system 68.83 57.18 62.47

Random baseline (Ours 1st iter) 51.69 38.75 44.30

Unlabeled bracketing accuracy on Eve
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Grammar induction: COLING results

P R F1

UPPARSE 60.50 51.96 55.90

CCL 64.70 53.47 58.55

BMMM+DMV 63.63 64.02 63.82

Our system 68.83 57.18 62.47

Random baseline (Ours 1st iter) 51.69 38.75 44.30

Unlabeled bracketing accuracy on Eve
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Grammar induction: Error analysis

Percent gold noun phrases (NPs) discovered
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Grammar induction: Error analysis

Part-of-speech tagging (V-Measure)



Grammar induction: Constructions of interest

Subject-auxiliary inversion: (c.f. Chomsky 1968)

ACT4

AWA2

AWA1

AWA4

AWA2

AWA1

AWA4

POS8

?

POS3

step

POS6

the

POS8

on

POS3

still

ACT4

POS1

rangy

POS7

is

POS8

,

POS2

oh
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child-directed input”. In: Proceedings of The 26th International Conference on Computational
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Grammar induction: Constructions of interest

Ditransitive:

ACT1

AWA3

AWA1

AWA4

AWA4

POS8

.

POS3

one

POS6

another

ACT4

POS5

you

POS7

get

POS7

’ll

POS1

we
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Grammar induction: Constructions of interest

Contraction:

ACT4

POS8

?

ACT2

AWA2

AWA1

POS5

it

ACT1

POS5

n’t

POS7

is

POS8

,

ACT2

AWA4

AWA4

POS3

picture

POS6

pretty

POS6

a

ACT1

POS7

’s

POS1

that
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+ Word distributions contain a substantial amount of information about English syntax

+ This information is detectible by a cognitively-constrained learner

+ There is still much room for improvement

+ Some residue may be unlearnable without additional cues (e.g. vision) or innate bias

+ Some residue may be captured by improved induction techniques
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Thank you!

To you, co-authors, anonymous reviewers of submitted papers, and members of various

discussion groups who gave feedback.

Computations for this project were run on a Titan-X GPU donated by the NVIDIA Hardware

Grant program and on the Ohio Supercomputer (1987). Funding was provided by NSF

#1422987.

This project was sponsored by the Defense Advanced Research Projects Agency award

#HR0011-15-2-0022. The content of the information does not necessarily reflect the position

or the policy of the Government, and no official endorsement should be inferred.

Segmenter Github:
https://github.com/melsner/neural-segmentation

Parser Github:
https://github.com/tmills/uhhmm/

https://github.com/melsner/neural-segmentation
https://github.com/tmills/uhhmm/
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Appendix



Speech segmentation: Algorithm

1. For each training epoch:

1.1 For each batch of n utterances in the training data

1.1.1 Generate a proposal distribution (segmenter network output)

1.1.2 Sample m segmentations from proposal distribution

1.1.3 Compute new proposal distribution as normalized sum of segmentations weighted by

reconstruction loss

1.1.4 Train segmenter network on new proposal distribution

Micha Elsner and Cory Shain (to appear). “Speech segmentation with a neural encoder model

of working memory”. In: EMNLP 2017
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Speech segmentation: Sampling procedure

Given a set of m sampled boundary sequences B1..Bm with associated reconstruction losses

L1...Lm:

P(x |Bi) =
P(Bi |x)P(Bi)

P(x)
≈

exp(Li)∑
j exp(Lj)

(1)

w t
i =

P(x |Bi)

P t
seg(B

t
i
)

(2)

E[B(t)] ≈
1∑
i w t

i

∑

i

w t
i B

t
i (3)



Speech segmentation: Tweaks for acoustics

+ Importance sampling caused oversegmentation

+ We suspect that this is due to non-independence between samples, exaggerated by

longer sequences

+ Acoustic results were obtained via 1-best sampling



Speech segmentation: Experiment parameters

+ Brent:

+ Max characters per utterance: 30

+ Max words per utterance: 10

+ Max characters per word: 7

+ Phonological AE hidden units: 80

+ Utterance AE hidden units: 400

+ Segmenter hidden units: 100

+ Phonological AE dropout probability: 0.5

+ Utterance AE dropout probability: 0.25



Speech segmentation: Experiment parameters

+ Zerospeech:

+ Max frames per utterance: 400

+ Max words per utterance: 16

+ Max frames per word: 100

+ Phonological AE hidden units: 20

+ Utterance AE hidden units: 400

+ Segmenter hidden units: 1500

+ Phonological AE dropout probability: 0

+ Utterance AE dropout probability: 0.25



Grammar induction: Algorithm

1. Initalization: Randomly sample HHMM parameters

2. For each training iteration:

2.1 Parsing: For each sentence in input:

2.1.1 Forward pass: Compute posterior over HHMM states left to right

2.1.2 Backward pass: Sample states right to left

2.2 Update HHMM parameters from sampled counts

Cory Shain et al. (2016). “Memory-bounded left-corner unsupervised grammar induction on

child-directed input”. In: Proceedings of The 26th International Conference on Computational

Linguistics. Osaka, pp. 964–975
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Grammar induction: HHMM Graphical model
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Grammar induction: Punctuation

+ Punctuation poses a problem — keep or remove?

+ Remove: Doesn’t exist in input to human learners.

+ Keep: Might be proxy for intonational phrasal cues.

+ Punctuation was kept in training data in main result presented above.

+ We did an additional UHHMM run trained on data with punctuation removed (2000

iterations).



Grammar induction: Full COLING Results

With punc No punc

P R F1 P R F1

UPPARSE 60.50 51.96 55.90 38.17 48.38 42.67

CCL 64.70 53.47 58.55 56.87 47.69 51.88

BMMM+DMV (directed) 62.08 62.51 62.30 61.01 59.24 60.14

BMMM+DMV (undirected) 63.63 64.02 63.82 61.34 59.33 60.32

UHHMM-4000, binary 46.68 58.28 51.84 37.62 46.97 41.78

UHHMM-4000, flattened 68.83 57.18 62.47 61.78 45.52 52.42

Right-branching 68.73 85.81 76.33 68.73 85.81 76.33

Table 1: Parsing accuracy on Eve with and without punctuation (phrasal cues) in the input. The

UHHMM systems were given 8 PoS categories while the BMMM+DMV systems were given 45.

UPPARSE and CCL do not learn PoS tags. Only the UHHMM systems model limited working memory

capacity or incremental left-corner parsing.

Cory Shain et al. (2016). “Memory-bounded left-corner unsupervised grammar induction on

child-directed input”. In: Proceedings of The 26th International Conference on Computational



Grammar induction: Newer results
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Grammar induction: Newer results

0 500 1000 1500 2000 2500 3000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

pe
rc

en
ta

ge

best NP F1
best VP F1
best PP F1
best NP agg F1
best VP agg F1
best PP agg F1

Category learning on Eve


	Introduction
	Motivation
	Modeling lexical acquisition with unsupervised speech segmentation
	Modeling grammar acquisition with unsupervised PCFG induction
	Conclusion
	Appendix

